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Abstract. In the paper, we investigate multi-server closed queueing systems with identical 

servers and a finite number of terminals. Requests from each terminal are characterized 

by a random space requirement (volume), the request service time doesn’t depend on its 

volume and has an exponential distribution. The total requests capacity in the system is 

limited by a positive value (buffer space memory volume) V. For such systems, stationary 

requests number distribution and loss probability are determined. The analogous results 

for open multi-server systems are obtained as a limit case. Some numerical results are 

attached as well. 
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1. Introduction 

Queueing systems with requests of a random space requirement (or random 

volume) [1, 2] are the generalization of the classical queueing models [3, 4]. 

They can be used to model and solve various practical problems in the design of 

computer and communication systems. In particular, such models can be applied 

for buffer space volume determination in the nodes of computer and communica-

tion networks. 

The main proposition of the theory of such systems [1] is the heterogeneity of 

requests served by the system with respect to their space requirements or, in other 

words, we propose that different requests need different memory size (volume) 

during their presence in the system. 

There are two types of queueing systems with requests of random volume [1]: 

1) systems with service time independent of request volume, 2) systems, in which 

service time and request volume are dependent. In this paper, we analyze the closed 

system of the first type. Such systems characterize processes of service of a con-
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stant number of clients, who send their requests individually to a common service 

center containing a limited number of identical servers. 

The paper is organized as follows. In Section 2, we determine the mathematical 

model of the analyzed system. In Section 3, we give the necessary notation, intro-

duce the random process describing the system behavior and obtain the steady-state 

characteristics of the number of requests present in the system and the distribution 

function of the total requests volume. In Section 4, we derive the relation for 

requests loss probability. In Section 5, we analyze the open M/M/n/(m, V) system 

as a limit case of previous one. In Section 6, the results of some numerical calcula-

tion are presented. 

2. Model description 

Consider the closed system in which N terminals are served by n, ,Nn ≤  iden-

tical servers (see Fig. 1). Each terminal generates its request after some thinking 

time having an exponential distribution with parameter .λ  We assume that each 

request needs some memory space. The size of such need (i.e. request volume) 

we denote by ζ  and assume that ζ  is a non-negative (discrete or continuous) 

random value (RV). 
 

 

Fig. 1. Closed queueing system with bounded buffer space 

Let }{)( xPxL <= ζ  be the distribution function (DF) of the RV .ζ  We denote 

by )(tη  the number and by )(tσ  the total volume of requests present in the system 

at time instant t. The values of the process )(tσ  are limited by the constant value 

0>V  which is called the memory volume of the system. Assume that the system 

under consideration contains the common queue with nNm −≤  waiting places. 

We shall denote our system by the notation M/M/n/m/(N,V). 

At the epoch τ  of the generation process termination, the request of volume y 

is accepted to the system if mn +<
−

)(τη  and .)( Vy ≤+
−

τσ  Then, we have 

1)()( +=
−

τητη  and .)()( y+=
−

τστσ  In opposite case, we have )()(
−

= τητη  and 
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),()(
−

= τστσ  the request will be lost and the terminal starts the generation of 

the next request. 

The accepted request starts its service by one of the free servers, if .)( n≤τη  

In opposite case, the request waits for service in the queue. We assume that the 

order of requests service is in congruence with FIFO discipline. Service time 

doesn’t depend on the request volume and has an exponential distribution with 

parameter .µ  If the request of any terminal was accepted to the system, the genera- 

tion of the next request starts after its service termination. 

For the system under consideration, we shall determine the stationary distribu-

tion of the number of requests present in the system, the distribution function of 

their total volume and the loss probability of a request. 

3. Determination of stationary requests number distribution 

and total request volume distribution function 

The behavior of the system under consideration can be described by the Markov 

random process )),(...,),(),(( )(1 ttt
tη

σση  where )(tjσ  is the volume of the jth 

request presenting in the system. It is clear that .)()(

)(

1

∑
=

=

t

k

j tt

η

σσ  

This process is characterized by the functions having the following probability 

sense: 

 ;,0},)({)( mnkktPtPk +=== η  (1) 

 .,1},)(,)({),( mnkytktPtyGk +=<== ση  (2) 

It is clear that, for ,,1 mnk +=  we have ).,()( tVGtP
kk

=  

It can be easily shown that the functions (1), (2) satisfy the following Kolmo-

gorov-type equations: 

 );()()(
)(

10

0
tPtPVNL

dt

tdP
µλ +−=  (3) 

 );(2)()(),()1()()(
)(

21

0

10

1 tPtPydLtyVGNtPVNL
dt

tdP
V

µµλλ +−−−−= ∫  (4) 
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00
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V
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k

µµ
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 (5) 
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tdP
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 ).()(),()1(
)(

0

1
tPnydLtyVGmnN

dt

tdP
mn

V

mn

mn

+−+

+

−−+−−= ∫ µλ  (7) 

In a steady state, we have obviously that σσηη ⇒⇒ )(,)( tt  when ∞→t  in 

the sense of a weak convergence, where RV η  and σ  is the steady-state number 

of requests present in the system and their total volume, consequently. So, the 

following limits exist: 

 ;,0),(lim}{ mnktPkPp k
t

k +====

∞→

η  (8) 

 .,1),,(lim},{)( mnktyGykPyg k
t

k +==<==

∞→

ση  (9) 

It follows from the equations (3)-(7) that the steady-state characteristics (8) and 

(9) satisfy the following equations: 

 ;)(0
10
ppVNL µλ +−=  (10) 

 ;2)()()1()(0
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 .)()()1(0

0

1 mn

V

mn
pnydLyVgmnN
+−+

−−+−−= ∫ µλ  (14) 

Introduce the following notation for Stieltjes convolution of the DF :)(xL  

,1)()0(* ≡yL  ∫ −=
−

y

kk
xdLxyLyL

0

)1(
*

)(
* ),()()( ...,2,1=k . 
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Theorem. The solution of the equations (10)-(14) has the form 
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 (15) 

where C is some constant value, ./ µλρ =  

The theorem can be proved by direct substitution of the function (15) to equa-

tions (10)-(14). The value C can be calculated from the normalization condition 

,1)(
1

0
=+∑

+

=
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k

k Vgp  whereas we have 
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Corollary. The steady-state probabilities kp  have the form 
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where 0
p  can be obtained from the relation (16). 

Note that, for 1≡ζ  and ,mnV +≥  we obtain the classical closed queue 

M/M/n/m/N (see e.g.  [5]). 

It is clear that the steady-state distribution function )(yD  of the requests total 

volume takes the form: 
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where .0 Vy ≤<  Of course, ,1)( =xD  if .Vy >  

4. Loss probability 

The determination of loss probability lossP  is based on the fact that (in a steady 

state) the mean number of requests accepted to the system on some time interval 
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must be equal to the mean number of demands finishing their service on this 

interval. Let λ  be the mean arrival rate of requests and K be the mean number 

of demands finishing their service during a unite of time. Then, we obtain 

.)1( KPloss =−λ  For the system under consideration, we obviously have 

,)(
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=
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whereas we obtain 
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where ./µλρ =  

5. M/M/n/(m, V) open system 

Let 0, →∞→ λN  so that .0, ∞<<→ aaNλ  In this case, we obtain an open 

system M/M/n/(m,V) [1] with Poisson entry, where a is the rate of requests arriving. 

Let ,,0,
* mnkpk +=  be the steady-state probability of the presence of k requests 

in the open system and *

lossP  be the steady-state loss probability for this system. 

Relations for probabilities *

kp  can be obtained by passing to limits in the relations 

(17), when .∞→N  Hence, for *

kp  determination, it is essential to calculate 

the limit .
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Using Stirling asymptotic formula 
ll

ell
−

π2~!  and introducing the notation 

,kNs −=  we get: 
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where )./(* µρ na=  As a result, we have the following known relations [1]: 
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For the loss probability ,*

lossP  we obtain 
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6. Numerical examples 

Note that Laplace-Stieltjes convolutions calculation is generally not very simple. 

But it is possible for some special cases. For example, if the request volume has 

an exponential distribution with parameter ,µ  we have for 0>y  that 
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For the case of gamma-distribution with parameters ,0>α ,0>f  when 
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Γ
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For the case of uniform on ],;[ ba  ,0≥a  distribution, we obtain [6]: 
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On Figures 2, 3 and 4, we present the dependence of loss probability 
loss
P  on 

the value of buffer space V. In all examples we put 0,2,3,1,1 ===== mnNµλ  

(line 1) or 1=m  (line 2). Figure 2 presents the case of exponential distribution 

of request volume with parameter .1=f  Figure 3 presents the case of its uniform 

distribution with parameters .2,0 == ba  In Figure 4 we present the case of 

gamma-distribution with parameters .2,2 == fα  
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Fig. 2. Loss probability for the case of exponential distribution of the request volume 

 

Fig. 3. Loss probability for the case of uniform distribution of the request volume 

 

Fig. 4. Loss probability for the case of gamma distribution of the request volume 
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7. Conclusions 

In the paper, we investigate the closed queueing systems with random volume 

requests. We show that, in such investigation, it is possible to take into account 

the heterogeneity of requests having different space requirements. We obtain 

the steady-state distribution of the requests number present in the system, the dis-

tribution function of the requests total volume and loss probability. We also show 

that the open Erlang system is the limit case of the investigated one. Some simple 

numerical examples are attached as well. 

References 

[1] Tikhonenko O., Probability Methods of Information System Analysis, Akademicka Oficyna 

Wydawnicza EXIT, Warsaw 2006 (in Polish). 

[2] Tikhonenko O.M., Queueing Models in Information Systems, Universitrtskoe, Minsk 1990 

(in Russian). 

[3] Bocharov P.P., D’Apice C., Pechinkin A.V., Salerno S., Queueing Theory, VSP, Utrecht-Boston 
2004. 

[4] Gnedenko B. V., Kovalenko I. N., Introduction to Queueing Theory, Birkhäuser, Boston 1989. 

[5] Breuer L., Baum D., An Introduction to Queueing Theory and Matrix-Analytic Methods, 

Springer, 2005. 

[6] Feller W., An Introduction to Probability Theory and its Applications. Vol. 2. Wiley, New York 

1971. 


