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Abstract. This work is related to the Jacobian Conjecture. It contains the formulas
concerning algebraic dependence of the polynomial mappings having two zeros at infinity
and the constant Jacobian. These relations mean that such mappings are non-invertible.
They reduce the Jacobian Conjecture only to the case of mappings having one zero at in-
finity. This case is already solved by Abhyankar. The formulas presented in the paper were
illustrated by the large example.
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1. Introduction

In the paper [1], Abhyankar proved that the polynomial mapping F:C*— C?
with a constant non-zero Jacobian has at most two zeros at infinity. This result was
generalized in the paper [2]. Moreover, in the same paper [1], Abhyankar also
proved that the Jacobian Conjecture [3-7] holds if and only if from the assumption
that Jac F'=1 it follows that the mapping F not has two zeros at infinity.

It is not difficult to indicate an infinite family of polynomial non-invertible
mapping having two zeros at infinity. These examples can be generalized. There-
fore, in this work, we indicate explicit formulas that give the algebraic dependence
of coordinates of polynomial mapping when its Jacobian is constant. We consider
two groups of mappings, depending on the form of the leading forms of these map-
pings. Therefore these formulas adjudicate that there are no polynomial invertible
mappings having two zeros at infinity.

2. Algebraic dependence of polynomial mappings

Let f;, h; be the complex forms of variables X, Y of degrees i, j respectively and
i,j=1.
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Remark 1. Let

f=(XY)'+f, 1, +f, et h (1)
and

h:(XY)q+h2q_l+h2 +h  +..+h, ()

q-2 2q-3

where p>q>1.
If Jac( f, h) = const = Jac(fl, h1) then

1 ! I a !
f:(XY+;h2q_“j +Ap_l(XY+; hzq_“j +...+A1£XY+; hzq_nj 3)

and

q-1

1 ! 1 1
h:(XYJrghzk_Hj +Bq_1(XY+gh2q_nJ +"'+B‘(XY+§}’24-“J “)

for some constants A,,..., A is defined by the for-

mula h  =X*'v*'h
2q-1

p1 BBy The form h,,

2¢-1)1-
Remark 2. Let
/= (XkY : )1’+ f(k+l)p—1 + f(k+1)p-z +ot f(k+1)(p_1)+1 +..+ £ (5)
and
h= (X T )q+ Pestygat T Piatyg— T Ay gy T T (6)

where k >1 (k and [ are relativity prim) and p>q>1.
If Jac(f, h) = const = Jac(fl, hl) then exist the forms h,,, , ..., h, for which

1 1~ 1Y
kyr 1
f:(X Y +;h(k+l)q—1‘k+l—1+;hk+l—2+ +;hlj +
p-1
wd, | xtrie Ly L 3 (7
p-l q (k+1)g—1k+1-1 q k1= T ee q 1

1 . .
ky 1
+A1(X Y +gh(k+;)q_1\k+,_1+ h"”‘2+"'+5h‘j
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and

(k+1)g=1kc+1-1

hz(XkY’+lh
q

1
1 1 1~
+B¢1—1[Xle+_h(k+l)q—lk+l—l+;hk+l—2+'“+;h1j +..+ )

(k+1)g-1lk+1-1

+BI[XkY’+lh

Jor some conmstants A,,...A,,, B,..B, . The form h( of degree

k+1—1 is defined by the formula h(

k+l)g-1lk+1-1

ey 197!
k+l)g-1" (X Y ) h(k+1)q—1\k+1—1'
The authors try to place the proofs of the above hypotheses in the next article.

Corollary. Obviously, in all of these possible cases, the polynomials f, h are
algebraically dependent and so Jac( f,h)=0.

The following example is the illustration of remark 2.

Example. Let
R AR AR AT A AR AT A Ak 9)
n=(x2r) wn | wn e e[ n 024 0" ol (10)
Since the Jacobian is constant we have consecutively

1) Jac((XZY)3, h5) :Jac((XZY)z,fg) (11)
3(X2F) Jac(X Y. hs) =20 Y Jac(X Y. £;) (12)

50
%X2YJac(X2Y, hs):Jac(XzY,fg) (13)

and appears

%Xthszfg (14)
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2) Jac((XZY)B, h4)+Jac(f8, hs) =Jac((X2Y)2,f7)

1

where
1°=M=Jac(%Xth5, hSJ:%hSJac(XZY, hs)
y
therefore
3(x27) Jac(x7, h4)+%h5Jac(X2Y, hs)=2X°Y Jac(X Y. f; )
and

>3
3(x77) h4+Zh§:2X2Yf7

Thus X*Y divides #2. We assume further that

hs= XY hy,
which implies

jfg:%(xzy)z hs,

returning to equality (18) we obtain

3(X2Y)2h4+%(X2Y)2h522=2X2Yf7
and occurs
%Xth4+§X2Yh522=f7
3) Jac((XZY)B, h3)+Jac(f8, hy)+Jac( £, h5)=Jac((X2Y)3,f6)

1 2

where

(15)

(16)

a7

(18)

(19)

(20)

@2y

(22)

(23)
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I'=Jac( ;. h,) :Jac(%(Xz Y)? hg,, h4j =%Jac( (X°7)%hy,, h4) =

=%((X2Y)2Jac( hs‘z, h4)+h5‘2Jac((X2Y)2, h4)) = (24)

:%(XzY)zJac(hs\b h4)+3X2Yh JaC(XZY’ h“)

52
and
o . 3,2 3.2 2 2 o
2" = Jac( f;. hs) = Jac SXY by XY G XY by, |

3 2 2 3 2 2
—EJac(X Y hy, X Yh5‘2)+§Jac(X Y h

52>

XY hy, )=

=%(X2Y hyJac( XY, hy, )= XY hy, Jac(XZY,h4)+(X2Y)2Jac(h4,h5‘2))
+%X2Yh52 Yac( gy, XY By, )= (25)
3 3

:3X2Yh4Jac( Xy, }15‘2)—3)(21/}15‘2 Jac( XY, h,)

+%(X2Y)2Jac(h4, hsz)_§X2Y h JaC(XzY, hs‘z )

52
Of the equation (29) results

3(x27 ) Jac(x77, h3)+%X2YJac(X2Y, hyyhy)

26
+§X2Yh§2 Jac( XY, hy, ) -
SO
3(X2Y)2h3+%X2Yh52h4+%X2Yh§2+2a6(X2Y)3=2X2Yf6 27)
and finally
%Xth3+%h52h4+%h§2+a6(X2Y)2=f6 (28)

4) Jac((X2 Y)3, h2)+Jac(f8, hy)+Jac(f;. hy )+ Jac( £y hs) = Jac((X2Y)3,f5)(29)

1° 2 3°

Now we have
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1°=Jac(f8, h3)=Jac(%(Xzy)2h52, h3j :%Jac((XZY)ZhSZ, h3)=
=%((X2Y)2Jac( s )+h5‘2Jac((X2Y)2,h3)): (30)

:%()(21/)2131(;(;15‘2 ) #3X2T hyac( X2V, k)

52
Next
3

2°=Jac(f7,h4)=Jac(%X2Y hy+ §X Y by, h j:
:%Jac(XzY Ry b, )+ZJac(X Y bl h ):

3D
:%h4X2YJac(X2Y, h4)+%(X2Y Yac( hly. hy)+h3, Jac( X7V, h4)) -

:%h4X2YJac(X Y. h )+2X Y hy, Jac( 52,h4)+%h§2mc()(2y, hy)

52
and

3O=JaC(_fé)a hs):JaC(z’X Y h +3h5‘2h +— hz‘zh +a()(X2Y)2,X2Yh52j:

:%Jac(XzY h3,X2Yh52)—%Jac(X2Y P AE 16Jac(X Y o hly)

+2a, (XY ) Jac(X3Y, hy, )=

=%(X2Yh3Jac(X2Y, hey )= XY by Jac X3V, b))+ (XY ) Jac (XY hs‘z))
_%(XW ac(hyy. By hy)+hgy Jac( X2V g,y ) (32)
—%hgz Yac(X>Y . hyy )+ 2a, (XY ) Jac( XY, hy,) =

=%X2Y hyJac( XY, hs‘z)—%XzY h gy Jac (XY )

+%(X2Y)2Jac(X2Y NS jX Y hyy Jac(hgy. b, )

=y 5‘2(h5‘2Jac(X Y, hy)thyJac(X Y, hy))

3 hz\z JaC(X Y, h5\2)+2a6 (Xzy)z JaC(XZY’ hsp)
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Of the equation (29) results
3(x27) Jac(x77, h2)+%X2YJac(X2Y, h52h3)+%h4 Jac(XY, h,)
—%hngac(XZY,h4)—%h52h4Jac(X2Y,h52)+%h§2Jac(X2Y,h52) (33)
+2a, (XY ) Jac( XY, hyy ) =2X°Y Jac(XY. £5)

hence

P 2 3 2 3 2 3 2 3 4 2 2 _
3(x7°r) hy+ S X Yh5‘2h3+zh4—§h5‘2h4+mh5‘2+2a6(X Y) hy,= G
=2X7%Y £
and

3

3(X2Y)2h2+§X2Yh 3

2
h3+1(h4_ih2 J +2a6(X2Y)2 hs, =2X°Y f5 (39)

52 52

2
. 1 .
Thus X *Y divides (h4 —Zhin . We assume again that

hrihip:XZYle (36)
Therefore

h4=%h2 +X2Y b, (37)

sk

From the equation (35) we obtain

3 3

3X2Yh2+zh5ph3+§xzy hi +ag XY hyy = f (38)

The equality (36) defines the function h , which appears in remark 3. This means
that the polynomials f'and % will be the form

3 2
f=(X2Y+%h52+%lej +4, (X2Y+%h52+%lej +A1(X2Y+%h52+%fllj (39)

and

2
h=(X2Y+%h52+%ﬁl)+BI(X2Y+%h52+%ﬁlj (40)
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Consequently
L, 7 2
h3=5h5‘2h1+BlX Y
1~ o1
h2:2h21+§B1h5‘2
and
1 -
hl_EBlhl
Similarly
3 3 2 A
f—ZX Yh,+ 2(X2Y) h,
3 2 ; 2v
fo= hs‘2 >X Yhyh+4,(X*Y)
3 2 3 2
3, n»
fi= 5ph +AX Yh+ Ahs‘2
1 1 2 2
ﬂ:§h1+EA2h5‘2hl+AlX Y
1o~ 1
f2=ZA2h21+EA1h5‘2
and

3. Conclusions

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

These hypotheses, tested by many examples, allow one to state that the poly-
nomial mapping ( f, h) :C?— C? having two zeros at infinity are non-invertible
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(in the global sense). Therefore it remains necessary to analyze only the case when
the mapping (f, 4) has only one zero at infinity and thus takes the form

f=X”+f1H+fHJr...Jrf1 (51)
and

h=X"+h +h +..+h,
CR (52)

where f, h; are the forms (of two complex variables) of degrees i, j respectively.

We show that there are non-trivial class of mappings having one zero at infinity
with the constant Jacobian, for which that Jacobian vanishes. It appears, therefore,
that in the general case, the polynomial mapping having one zero at infinity and
the constant Jacobian, must make the Jacobian vanish. This would mean that
the Jacobian Conjecture takes place only in the case, when (cf. [1])

f=Ah" + A" v+ A, h+a, X, n>1, 4,#0, a,#0 (53)

and
q q-1 2 oh,
h=B,X"+B X" +..+B, ,X"+h, q=2, By#0, a—YstO (54)
and also in the simplest case

f=Ag X"+ A, X"+ +A4, , X +A, X-cY, n=2, A,#0, c¢0(55)

and

h=B,X, By#0 (56)

The polynomials £, # have in each case one zero at infinity and do not have the con-
stant components as well as deg f > degh.
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