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Abstract. In this paper, we perform the frequency-expansion formula for the nonlinear
cubic damping van der Pol’s equation, and the nonlinear frequency is derived. Stability
conditions are performed, for the first time ever, by the nonlinear frequency technology
and for the nonlinear oscillator. In terms of the van der Pol’s coefficients the stability con-
ditions have been performed. Further, the stability conditions are performed in the case of
the complex damping coefficients. Moreover, the study has been extended to include the
influence of a forcing van der Pol’ oscillator. Stability conditions have been derived at each
resonance case. Redoing the perturbation theory for the van der Pol oscillator illustrates
more of a resonance formulation such as sub-harmonic resonance and super-harmonic
resonance. More approximate nonlinear dispersion relations of quartic and quintic forms
in the squaring of the extended frequency are derived, respectively.
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1. Introduction

In the present paper, the stability criteria for the dynamics of a Van der
Pol-Duffing oscillator are considered. This equation is one of the most interesting
and important collective behaviors in non-linear dynamics. Many efforts have been
made to approximate the solutions of this equation or to construct simple maps
that qualitatively describe important features of the dynamics. The solutions of this
equation are oscillations, which may have periodic forms or non-periodic, as well.
We can mark off two cases: the unforced, which is autonomous (there is no excita-
tion parameter) and the forced oscillator with excitation frequency, which is
non-autonomous.

In recent years, several analytical methods such as homotopy perturbation [1],
harmonic balance [2], residue harmonic balance [3], The Hamiltonian approach [4],
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homotopy analysis [5], max-min approach [6], coupling of homotopy variation [7],
iterative homotopy harmonic balance method [8], global residue harmonic balance
[9], Fourier series solutions with finite harmonic terms [10], amplitude-frequency
formulation [11-13], parameter-expansion method [14-19], multi-step homotopy
analysis method [20], multiple-scales homotopy perturbation method [21-23] and
the Frobenius-homotopy method [24] have been developed for solving strongly
nonlinear oscillators.

The system considered herein is an extended version of the well-known of the
typical van der Pol’ oscillator, which is a paradigmatic model for the description of
self-excited oscillations. Adding a cubic nonlinearity to the primary system, it is
possible to obtain a large variation frequency [25]. This modified system is usually
referred to as van der Pol-Duffing oscillator [26]. The Van der Pol-Duffing forced
oscillator with the variation of the forced frequency are obtained and studied, based
on the homotopy analysis method, by Jifeng Cui et al. [27]. In this work, the stabil-
ity of the periodic solutions is obtained by use of Floquet theory.

The main idea of this work is to obtain the stability criterion for the generalized
van der Pol-Duffing oscillator and to find approximate periodic solutions. In Ref.
[18-20] the author has established the periodic solution and studied the stability
behavior via the multiple-scales homotopy technique. Stability criteria have been
established from the linear perturbation of the amplitude equation around the
steady-state solution. In the present work, a new method is adopted to construct
the stability criterion. The criterion has been established, for the first-time, via the
homotopy frequency analysis. The derived of the nonlinear frequency proposed
by scientists and engineers [14-18, 26] is the most effective and convenient method
for handling nonlinear problems. In this method, the solution and unknown
frequency of oscillation are expanding in a series by a bookkeeping parameter.
The use of the nonlinear frequency in studying the stability behavior is a new tool
that is important and powerful for solving nonlinear oscillator systems arising in
nonlinear science and engineering.

2. Frequency analysis via homotopy perturbation method
for the autonomous case

We consider the following equation, which is a generalization of cubic van der
Pol’s-Duffing equation:

j}+a1y+a)gy—l—Qy3+a2y2)'/+a3y)'/2+a4j/3=0 (D

where y=(r), and ¢ is the independent variable with the initial conditions
¥(0)= 4; 7(0)=0. The constants ®, and O are real. The remaining coefficients
a;;j=1:4 are, in general, complex constants. In order to solve this equation via
the homotopy perturbation technique, we define the two parts
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Ly()=y+oiy and &)
NO()=ay+0y' +ary’ i+ asyy’+ i 3)

Construct the homotopy equation in the form
L))+ PN (vt )= 0; pef0.1] )

Considering the frequency analysis so that we define the following frequency ex-
pansion:

o’ =} + po, + pro, + .. (5)
Assuming that the function y(z; p) has been expanded as
At p)= noO)+ () + P72 () + . (6)
Employing (5) and (6) with (4), equating the identical powers of p to zero, yields
P’ o+ @y =0, yy(0) = 4, y(0)=0. @

P+ 5023/1 =0y~ @Yy _ng - azygj/o - as)’oyg —a4j/3, n(0)=0, y(O) =0. (8
The solution of the zero-order problem leads to
yo(t)= Acos wt. &)

Substituting (9) into (8), the requirement of no secular term in y, (t) needs

o, =%A2(3Q+a3a)2) and (10)
A =—L2. (11)
a, +3a,0

The solution of (8) without secular terms yields

()= 5 Ady ; [<a3a)2—Q)(cos3a)t—cosa)t)+ w(az—a4a)2)(sin3a)t—3sin a)t)],
8w (a2+3a4a) )

(12)
where A° has been replaced by (11). If the first order approximation is enough,

then setting p — | into expansion (6) the approximate periodic solution can be
readily obtained:
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Aa (a3a)2 - Q)(cos 3wt -coswt)

8a)2(a2 + 3a4a)2) + a)(a2 —a4a)2)(sin3a)t —3sinwt) '

y(t)zAcosa)t+ (13)

The approximate solution (13) is an oscillator where the parameter @ has real
values. This requires formulating a dispersion relation including the argument o.

2.1. Stability conditions of cubic damping van der Pol’s nonlinear oscillator

In order to find the expression for the nonlinear frequency ®”, we substitute
(10) into (5) and setting p — 1 yields the approximate nonlinear frequency, in

terms of the amplitude A4, in the form

, o5+ 01
T iea (14
Removing the amplitude 4> from (14) using (11) leads to
3a,0" - (3505(14 —a, —aa, )a)2 +3a,0 - wja, =0. (15)

The necessary and sufficient condition for stability is that @ must be a real
quantity. This constrains for stability can be achieved when the following condi-
tions on (15) are satisfied together:

a, >0, (3w§a4 —aya, —a2)> 0, (3a1Q - a)(z)az)> 0, and
(3024, —aay - ay) +12a,(03a, - 3a,0)> 0. (16)

These are the required conditions in order to obtain the oscillatory solution.
In order to find the necessary and sufficient conditions for the existing the limit
cycle, we remove o’ from (11) using (14) yields

(94,0 — aya;)4* + 4(3a4a>§ +a,— a1a3)A2 +16a,=0. (17)

According to this approximate analysis, a limit cycle will exist if the amplitude A
is real. This requires the following relations:

a,>0, 9a,0 — aya, >0, 3a,0; +a,—aya; <0, and as)

(36146()3 +a,— a1a3)2 —4aq, (9a4Q —a,a, ) > 0.

In fluid mechanics, the damping coefficients a,,a,,a; and a, may appear in
the complex form. In order to obtain the stability criteria, in this case, one can
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assume that ®” be real in the characteristic equation (15) separating the real and
imaginary parts then employing the imaginary part to the real part. The result
represents a characteristic equation having real coefficients. Therefore, for the
oscillatory solution, the requirement of @ being real yields the following stability
conditions:

Rea, >0, Re[3a)§a4ﬁ4al - alﬁla3ﬁ4]— (Re a4)(Re a 52)+ (Im a4)(Im a 52) >0, and

(BQ - a)é)ala_zl (Re a4)— o; (Im a, )(Im a1a2)> 0. (19)

3. The non-autonomous case

We are now concerned with the excited, by a periodic external force, van der
Pol-Duffing oscillator. This is the more general case, so we rewrite equation (1)
with the forcing part included in

Vray+oly + Oy’ +ay’y+ayit+ a3’ = Bf cosQt, y(0)= B; 7(0)=0. (20)

where f and Q represent the amplitude and the frequency of the forcing part.
The application of the homotopy perturbation method allows several types for
the primary part L(y(t)) The chosen of L(y(t)) as defined by (2) will leads to study
the stability of the harmonic resonance case. Some changes in the homotopy equa-
tion (4) is done whenever the alternative choice for the primary part L(y(t)) of (20)
is included the forcing part. This case will lead to obtain the stability criteria at
sub-harmonic and super-harmonic resonance cases. These are the subject of the
next sections.

3.1. Solution and stability conditions at the harmonic resonance case

We proceed as in the previous sections assuming that the homotopy equation
has been built in the following form:

F+oly+play+ 0y +ay’y+ayy’+ay’ - BfcosQr)=0. (1)

To discuss the exact resonance case, we assume that the frequency of the periodic
force Q is equivalent to the nonlinear frequency @. The requirements of obtaining
the uniform solution at the resonance case lead to the removal of the terms that
producing secularity in the first-order problem of (21), so we obtain

4a

_—. 22
a,+3a,Q’ 22)

QI:%BZ(3Q+a3Qz)—f and B’=—
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The function of y, (t) without secular terms has the form

(a3Q2 - Q)(cos 3Q¢ — cos Q1)
, (23)
+ 0 a, - a,9?)(sin 30 —3sin Q)

Ba,
N (t): 5 5
80 (a, +3a,9)

The first order approximate solution of the harmonic resonance case has the form

(a392 - Q)(cos 3Q —cos Q)
+Qa, - a,9%)(sin 30 —3sin Q)

Ba,
80 (a,+3a,9)

y(t) = BcosQ +

}. 24)

In this case, the frequency Q has satisfied the following dispersion relation:
34,9~ (3a,0i— ay — ava, ~3a, )02+ (30 — iy + a f)=0.  (25)

Since the forcing frequency Q is real, then the necessary and sufficient stability

conditions are

_aata,

,and f>wl-30L (26)
a, a,

a,>0, a,>0, f <}

These stability criteria occur for the system having real coefficients of the van der
Pol-Duffing equation (21). Further, when these coefficients are in complex form,
the stability conditions are present in the form

Rea, >0, Re[a4ﬁ4(3(a)§ - f)a4 - a1a3)— a264] + (Im a, )(Im a254)> 0, and

(Rea,)Re|30aa,~ (02 - f)ard, |- (1m a,)m[304, - (02 - £)(@a,)|> 0. @7)

4. Further harmonic resonance cases for the non-autonomous problem

In the application of the homotopy perturbation method, for the forcing
van der Pol’s damping nonlinear oscillator (20), there is an another chosen for
the primary part L(y(t)). The alternative is chosen [22] such that

L(y(t)) =y + w§y — Bf cosQt, (28)

Redoing the homotopy perturbation method using the primary operator (28) leads
to rearranging the homotopy equation (21) to become

j}+a)§y—choth+p(alj)+Qy3+a2y2y+a3yy2+a4j/3):0. (29)

Employing the two expansions (5) and (6), assuming that Q # @, the primary
solution becomes
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w*—Q? @*—Q

yo(t)zB(l— f jcosa)t+ szcoth. 30)

We briefly now present the behavior of the equation (29) using a first-order
approximation. Accordingly, the first-order perturbation is performed as
i+’ =

2
B[l_ zf ja)l—%{@wzﬁ@{l—ﬁj +2<c1392+3Q)(w2j_[—;2)z]B2 cosmt

o’ —Q?

2
2
+a)B(l—ﬁ] a1+i32 (a2+3a4a) )[1 %2)} +2(a2+3a4Q2)(a)2{—Q2)2 sinwt

-

L30+0%,)B ( .
P

Lot e
+QB( ]{ ~(a, +30 a4)B{l— 2f92] +i(a2+3a4Q2)Bz[ / ] }singz
f

3
j [(a3a) Q)cos3a)t+a)( a4a)2)sin3a)t]

L 1—
4

3
+i33 ! j[(Qza3—Q)cos3Qt+Q(a2—Q2a4)sin3Qt]

o’ -Q?
2
1
i wzfgzj(l_wzfgzj
[0a;(2Q + 0)-30]cos(Q+20)1 —[a;0(2Q - @) +30] cos(Q - 20)r
V(@ +20)- 30074, Jsin(@ + 20): + [0, (Q - 20) - 30074, Jsin(@ - 20)r

2
1osf  f S
+ZB [a)z—sz (l_a)z—szx

[4;Q(Q +20) - 30]cos2Q + @)1 +[a;Q(Q - 20) - 30] cos(2Q - )
g {+ 0,20+ ©)+3Q%wa, [sin2Q + )t +]a, 22 - 0)- 302w 4, |sin20 - a))z}’
€1y
Three cases can be distinguished in analyzing this case. The non-resonance
case, where the forcing frequency Q is away from the nonlinear frequency @
the sub-harmonic resonance case, which occurs as QQ = 3@ and the super-harmonic

. . 1
resonance case which arises whence Q = ga)
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4.1. The non-resonance case

In this case, the uniform solution for (31) is performed when the terms that
producing secular terms absent. At this stage, we add the solution of (31) without
secular terms to the primary solution (30) to produce the final first-order approxi-
mate solution in the form

2 3
y(t)=B|1- 2f >+ B a cosa)t+5;ﬂsina)t
0= 4(w2-0?f 10(0* - 02

Bf
(a)z—Qz
_—4(;3?22)4 {fz (Clz + 3a4§22)+%(a2 + 30)2“4)(‘02_ Qz_f)z}in Qi

B3
3200 -0f

+

){H 4((023_2 ] [— (0+wa)l0* -2 - £+ fz(a3Q2+3Q)]}coth

(0)2 -0’ - f)3 [(a3a)2 - Q)cos 3ot + a)(a2 - a4a)2)sin 3w t]

+4(a) 92?@ Q)}[( a3—Q)COS3Qt+Q(a2_Qza4)sin3Qt]

LB f(a’ -0 ff {3(Q a’a3(2Q+a;)c05(Q+2a))t+ a:0(2Q ) +30 005(9—250)’}

4((02 )3 Q+0)Q+30 (Q-0)Q-30)
3 2 2
B f(a) Q- 3Qa) a-a(@+20) 0 ), 3000 6Q-20) 0
a) s @+ o)Q+30) (Q-w)Q-30)
30-a,0(Q-20)

s(2Q + a))t +

Bf a) -0’ {3Q 4Q(Q+20)

cos2Q—-w)t
16Qa) el Q+o ( )}

Q-w

2 2 2
B f a) - {az 20+0)+3Q"0a, s1n(2Q+a))t—3Q ®dy _aZ(zg_a))sin(ZQ—a))t},

160(0” - 2) Q+o Q-0
(32)
where the constants & and [ are
P ) WA T s NN
8 (90?-0?) 53)

1720, - 0(0? - 702?)]

Loy
(02— 02)(w2-902?)

o) 30+ a,(202- Q)]+

b
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2Q2f3
o’ — 992) (a)2 - Qz)

53 f3(w2_892_ /) (i ase?)- (

|, (2 +30%) - 30,02 (0? - 502)+]

- z(mi(i’;;i;;zf_)zgz)[az(ww“_4592w2+ 594)+ 3a4QZa)2(l 1@2_392)]

_ flo’ -0~ f [a2<3a)3—15a)2§2 + 2OQ3)+ 3Q°wa, (30)2 =50 - 693)].
40(0*-0?)
(G4

As explained before, the result of removing the secular terms from equation (31)
implied
2
=2 _[30+a0?) 0 @) w- Q- 2£)1 9077 + a2+ 202 (35)
4e- 2
4((02— QZ)Z a,

(a,+30%a, ) (02— ©) (02~ Q2= 21 )+ 30, 12+ 3a, /(07 + 202?)

B . (36)

The above solvability conditions used to formulate the following nonlinear frequency
that corresponds to the non-resonance case:
8 6 4 2
@+ M@+ my,@" + myo” + my =0, (37

where the constants m's are:

m; = L("2 +ayay —3a,07 64, (f +Q° ))’
3a,

n, =L[3a4 (f+ Q2)2+ 2(3a4a)§ —aay —az)(f+ Q2)+ 3alQ—a2a)§],

a,

1 | (aqas -3a,0¢ |\ f+Q* [+ 2a,0f —6a +Q? (38)
mlz_(l ,—3a0 (1 )Z ( 07 ~6a,0) f )

3ay | +a, (324 202+ Q%)+ 6a, 1201 ’

= a0 o7+ 2000 A 3]
4

The requirement of all the eigenvalues for the characteristic equation (37) to be real
needs all the four roots of (37) must be positive and real. From elementary algebra,
the four roots are positive whence

my <0, my>0,m<0 and my,>0. 39)
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There are three discriminants for the quartic polynomial to ensure the existences of
the real roots [28]. The necessary and sufficient conditions, for all the eigen-values
of (37) to be real, are

3mi —8mymy >0, 4m3 —9mym; >0, 3m; —8m, > 0. (40)

Conditions (39) and conditions (40) together represent the strict requirements to
obtain the periodic solution.

4.2. The sub-harmonic resonance case

The sub-harmonic resonance case arises when the frequency Q has equivalent
to 3w. In order to obtain periodic solutions and to study the stability behavior at
this resonance case, we need to remove the additional secular terms that are found
in equation (31). Removing of these secularity leads to formulate the approximate
nonlinear frequency, which satisfied the following characteristic equation:

0%+ k0 + k' + ki + ky =0, (41)

where k's are real constants listed below:

ky= 241a4 (8a2 +8aja; +15a, f — 24a4a)§),
k= 961 laa, (£ —802)+ 3a, £(11f —2002)+ 124,80 - a, £ ).
a,
(42)
bl s
ko= 9224 (30 -a:0)

Accordingly, the uniform approximate first order solution has the final form:

y(t) = B {6Q(2f3+ 652w’ +80 fo' - 640(06)

8 2 3 2 2 4 6 coswt
512x2400° | + a0 (- 1347+ 530 20 + 800 for* + 38400°
. B 2a, (217 +545 2+ 2000 for' - 57600° ) -
s ——— Sin @
512x 2400’ +9a4a)2(—289f3—410f2a)2+1l20fa)4+1280a)6)
B3
© 81926°
B3
T
81920

[0(#7+ 24 /207 2560° - s (£7+ 40 £ 207128 fir'~ 2560° | cos 301

lay (3424 1207=25600° )- 4,0 (49 £+ 24 £ 20°— 384 for'— 2560° ||sin 3001
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B3
" 128%96
B3
_—7f
96x 256

- ﬁjﬂ (8602 + f)[3(5a3a)2 - Q)cos Tot+o (7a2 + 27a)2a4)sin 7a)t]
X @

+ ﬁf{(%}z% - Q)cos ot +3w (a2 - 9a)2a4)sin 9a)t],

where the amplitude B in this case has the form
B 1280"q,
(12 + 4 f) +320")+ 3a,0* (11 12+ 20 fo’ + 3200*)
As mentioned before, the stability conditions are derived in the form
ky<0, k>0, k>0, k>0, and
3ki—8kok,>0, 4k?—9kky>0, 3k?—8k,k,> 0.

77 +802)[60 - (£ +140? | cos 501

(8w2+f)[5a2(f—4a)2)+ 360°a, (a)z—f)]sin Sot
(43)

B’=

(44)

(45)

4.3. The super-harmonic resonance case

When the frequency Q has equivalent to la), then we have the so-called the

3
super-harmonic resonance case. The first-order approximate solution of the forcing

van der Pol-Duffing equation (20), without secular terms, is formulated in the
following form:

- Bf |:128£24 (r-80%)+ B0 /3~ 192./02" + 768Q°)

cos Q¢
16 % 64Q°( = 8Q2) - B*Q’a, ( FP—6412Q0%+704 1 Q" - 230496)
B'f l:az (/2-1927 Q"+ 768Q°)

6x5120° (7 802) | —a,0(49.£7 115220 + 8640 /2" - 207360 |

sin Q¢

B {892( 7-802f+2B20(£7-15 207+ 80 £ Q'+ 6402°)

LB cos3Q¢
640" (1-802) | + BQa, (317~ 58/°Q7+ 4321 Q*~11520°)

 B(r-99) [2a(f-15r207 241 4 5760°) o @6
5760° (- 802) | + @, Q2 (25 17~ 5221207+ 3888 £ '~ 103680
+ Bf F=8Q2 1|60 — a;| £+ 6Q%)|cos 5Q — Q| 10a, —9a,| f— 6Q?)|sin 5Q¢
5120*
—%:206( 7-80%F[3(0 - 5a:9%)cos 721 - £ Q(7a, - 27a,0%)sin 7021
B3

+m(f -802) [0 - 9a:0)cos 902 - 30(a, 94,02 sin 921,
X
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where the amplitude B is given by

19200 (/-89
20, (17152024 72 £ Q'-1920° )+ 0,02 (25 /- 522 £ 2Q0%+ 3888 £ Q- 10368Q°)
47)

B*=-

As a result of the removing the secular terms from equation (31), taking into

1 - . .
account the case of Q:Ea), the characteristic equation has been evaluated in

the following form:
7 QY+ b, OF + 1 Q°+ b, Q' + B Q% + By = 0. (48)
The coefficients that appear in the above dispersion relation are:
hs = 46656,
hy = %[Sal% +8a, ~3a,(27 7+ 8a)).
4

hy = 1[245,1 (8Q — 9fa3)— 8a, (27f+ 8@§)+ 27 fa, (29f+ 24603)],

a,

==L (20 (12029 )60 15 802) 325 7+ 58] 4
4

I zzf_z[al (900 -9 1)~ 6a, (3 £+ 502 )+ 25 f,7 |,
a,

hy = f—3(a2a)§ - 3a1Q).
a,

Stability conditions can be performed as follows:
Five changes of sign in the characteristic equation (48) signify the presence of
positive roots. Therefore the requirements of positive roots are

By, hy <0, and Ak, > 0. (50)

The necessary and sufficient conditions for all roots of (48) to be real [28] are

ot g S0 i=1:4 (51)
1

1

n—i

Satisfying conditions (50) and conditions (51) together, ensure that the solution (46)
has a periodic form.
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5. Conclusions

In this work, we present the basic theoretical efforts that are known in order
to deal with non-trivial solutions of the van der Pol oscillator. We obtain analytic
approximation solutions for the generalized cubic van der Pol-Duffing equation.
We also construct a set of stability criteria in order to ensure the presence of the
periodic solutions. The homotopy frequency method is used to derive an expression
for approximate nonlinear frequency for the autonomous case. The derivation has
been extended for the non-autonomous case where the forcing van der Pol’s equa-
tion is considered. A polynomial with a quadratic form in the nonlinear frequency
®” is obtained for the non-forcing van der Pol’s equation. In the presence of the
forcing, f cosQt the nonlinear frequency has formulated as a quadratic form in
Q? at the harmonic resonance case. In the case of the sub-harmonic resonance
case, a polynomial of quartratic in »” has been imposed. In the final case, a quintic
polynomial in Q* has been governed the super-harmonic res case. Periodic solu-
tions are generated under an urgent condition on the frequency @ to be a real
quantity. This requires that all roots of the dispersion relations must be real and
positive quantities. Satisfying these requirements imposes some conditions, for
the first-time, known as the stability conditions.
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