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Abstract. In this paper, we perform the frequency-expansion formula for the nonlinear 

cubic damping van der Pol’s equation, and the nonlinear frequency is derived. Stability 

conditions are performed, for the first time ever, by the nonlinear frequency technology 

and for the nonlinear oscillator. In terms of the van der Pol’s coefficients the stability con-

ditions have been performed. Further, the stability conditions are performed in the case of 

the complex damping coefficients. Moreover, the study has been extended to include the 

influence of a forcing van der Pol’ oscillator. Stability conditions have been derived at each 

resonance case. Redoing the perturbation theory for the van der Pol oscillator illustrates 

more of a resonance formulation such as sub-harmonic resonance and super-harmonic 

resonance. More approximate nonlinear dispersion relations of quartic and quintic forms 

in the squaring of the extended frequency are derived, respectively.  
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1. Introduction 

In the present paper, the stability criteria for the dynamics of a Van der 

Pol-Duffing oscillator are considered. This equation is one of the most interesting 

and important collective behaviors in non-linear dynamics. Many efforts have been 

made to approximate the solutions of this equation or to construct simple maps 

that qualitatively describe important features of the dynamics. The solutions of this 

equation are oscillations, which may have periodic forms or non-periodic, as well. 

We can mark off two cases: the unforced, which is autonomous (there is no excita-

tion parameter) and the forced oscillator with excitation frequency, which is 

non-autonomous. 

In recent years, several analytical methods such as homotopy perturbation [1], 

harmonic balance [2], residue harmonic balance [3], The Hamiltonian approach [4], 
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homotopy analysis [5], max-min approach [6], coupling of homotopy variation [7], 

iterative homotopy harmonic balance method [8], global residue harmonic balance 

[9], Fourier series solutions with finite harmonic terms [10], amplitude-frequency 

formulation [11-13], parameter-expansion method [14-19], multi-step homotopy 

analysis method [20], multiple-scales homotopy perturbation method [21-23] and 

the Frobenius-homotopy method [24] have been developed for solving strongly 

nonlinear oscillators.  

The system considered herein is an extended version of the well-known of the 

typical van der Pol’ oscillator, which is a paradigmatic model for the description of 

self-excited oscillations. Adding a cubic nonlinearity to the primary system, it is 

possible to obtain a large variation frequency [25]. This modified system is usually 

referred to as van der Pol-Duffing oscillator [26]. The Van der Pol-Duffing forced 

oscillator with the variation of the forced frequency are obtained and studied, based 

on the homotopy analysis method, by Jifeng Cui et al. [27]. In this work, the stabil-

ity of the periodic solutions is obtained by use of Floquet theory. 

The main idea of this work is to obtain the stability criterion for the generalized 

van der Pol-Duffing oscillator and to find approximate periodic solutions. In Ref. 

[18-20] the author has established the periodic solution and studied the stability 

behavior via the multiple-scales homotopy technique. Stability criteria have been 

established from the linear perturbation of the amplitude equation around the 

steady-state solution. In the present work, a new method is adopted to construct 

the stability criterion. The criterion has been established, for the first-time, via the 

homotopy frequency analysis. The derived of the nonlinear frequency proposed 

by scientists and engineers [14-18, 26] is the most effective and convenient method 

for handling nonlinear problems. In this method, the solution and unknown 

frequency of oscillation are expanding in a series by a bookkeeping parameter. 

The use of the nonlinear frequency in studying the stability behavior is a new tool 

that is important and powerful for solving nonlinear oscillator systems arising in 

nonlinear science and engineering. 

2. Frequency analysis via homotopy perturbation method 

for the autonomous case 

 We consider the following equation, which is a generalization of cubic van der 

Pol’s-Duffing equation: 

 0
3

4

2

3

2

2

32
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=++++++ yayyayyaQyyyay &&&&&& ω  (1) 

where ( )tyy = , and t  is the independent variable with the initial conditions 

( ) ( ) .00;0 == yAy &  The constants 2

0
ω  and Q  are real. The remaining coefficients 

4:1; =ja j  are, in general, complex constants. In order to solve this equation via 

the homotopy perturbation technique, we define the two parts  
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Construct the homotopy equation in the form 

 ( )( ) ( )( ) [ ].1,0;0;; ∈=+ ρρρρ tyNtyL  (4) 

Considering the frequency analysis so that we define the following frequency ex-

pansion: 
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Assuming that the function ( )ρ;ty  has been expanded as 
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Employing (5) and (6) with (4), equating the identical powers of ρ  to zero, yields 
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The solution of the zero-order problem leads to 

 ( ) .cos
0

tAty ω=  (9) 

Substituting (9) into (8), the requirement of no secular term in ( )ty
1

 needs 
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The solution of (8) without secular terms yields 
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38
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where 
2

A  has been replaced by (11). If the first order approximation is enough, 

then setting 1→ρ  into expansion (6) the approximate periodic solution can be 

readily obtained: 
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The approximate solution (13) is an oscillator where the parameter ω  has real 

values. This requires formulating a dispersion relation including the argument ω . 

2.1. Stability conditions of cubic damping van der Pol’s nonlinear oscillator 

In order to find the expression for the nonlinear frequency 2
ω , we substitute 

(10) into (5) and setting 1→ρ  yields the approximate nonlinear frequency, in 

terms of the amplitude A, in the form 

 .
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Removing the amplitude 
2

A  from (14) using (11) leads to  
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The necessary and sufficient condition for stability is that ω  must be a real 

quantity. This constrains for stability can be achieved when the following condi-

tions on (15) are satisfied together: 

 ,0
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These are the required conditions in order to obtain the oscillatory solution. 

In order to find the necessary and sufficient conditions for the existing the limit 

cycle, we remove 
2
ω  from (11) using (14) yields 

 ( ) ( ) .016349
1

2
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4

324
=+−++− aAaaaaAaaQa ω  (17) 

According to this approximate analysis, a limit cycle will exist if the amplitude A 

is real. This requires the following relations: 
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In fluid mechanics, the damping coefficients 321
,, aaa  and 4

a  may appear in 

the complex form. In order to obtain the stability criteria, in this case, one can 
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assume that 2
ω  be real in the characteristic equation (15) separating the real and 

imaginary parts then employing the imaginary part to the real part. The result 

represents a characteristic equation having real coefficients. Therefore, for the 

oscillatory solution, the requirement of ω  being real yields the following stability 

conditions: 

 ,0Re
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2142144311144
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 ( ) ( ) ( )( ) .0ImImRe3
214

2

0411

2

0
>−− aaaaaaQ ωω  (19) 

3. The non-autonomous case  

We are now concerned with the excited, by a periodic external force, van der 

Pol-Duffing oscillator. This is the more general case, so we rewrite equation (1) 

with the forcing part included in 

 ,cos
3
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tBfyayyayyaQyyyay Ω=++++++ &&&&&& ω ( ) ( ) .00;0 == yBy &  (20) 

where f  and Ω  represent the amplitude and the frequency of the forcing part. 

The application of the homotopy perturbation method allows several types for 

the primary part ( )( )tyL . The chosen of ( )( )tyL  as defined by (2) will leads to study 

the stability of the harmonic resonance case. Some changes in the homotopy equa-

tion (4) is done whenever the alternative choice for the primary part ( )( )tyL  of (20) 

is included the forcing part. This case will lead to obtain the stability criteria at 

sub-harmonic and super-harmonic resonance cases. These are the subject of the 

next sections. 

3.1. Solution and stability conditions at the harmonic resonance case 

We proceed as in the previous sections assuming that the homotopy equation 

has been built in the following form: 
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0
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To discuss the exact resonance case, we assume that the frequency of the periodic 

force Ω  is equivalent to the nonlinear frequency ω . The requirements of obtaining 

the uniform solution at the resonance case lead to the removal of the terms that 

producing secularity in the first-order problem of (21), so we obtain 
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The function of ( )ty
1

 without secular terms has the form  
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The first order approximate solution of the harmonic resonance case has the form 
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In this case, the frequency Ω  has satisfied the following dispersion relation: 
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Since the forcing frequency Ω  is real, then the necessary and sufficient stability 

conditions are 
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These stability criteria occur for the system having real coefficients of the van der 

Pol-Duffing equation (21). Further, when these coefficients are in complex form, 

the stability conditions are present in the form 
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4. Further harmonic resonance cases for the non-autonomous problem 

In the application of the homotopy perturbation method, for the forcing 

van der Pol’s damping nonlinear oscillator (20), there is an another chosen for 

the primary part ( )( ).tyL  The alternative is chosen [22] such that  

 ( )( ) ,cos
2

0
tBfyytyL Ω−+= ω&&  (28) 

Redoing the homotopy perturbation method using the primary operator (28) leads 

to rearranging the homotopy equation (21) to become 
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3

4

2

3

2

2
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2

0
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Employing the two expansions (5) and (6), assuming that ω≠Ω , the primary  

solution becomes 
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We briefly now present the behavior of the equation (29) using a first-order 

approximation. Accordingly, the first-order perturbation is performed as 
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Three cases can be distinguished in analyzing this case. The non-resonance 

case, where the forcing frequency Ω  is away from the nonlinear frequency ω , 

the sub-harmonic resonance case, which occurs as ω3=Ω  and the super-harmonic 

resonance case which arises whence .
3

1
ω=Ω  
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4.1. The non-resonance case 

In this case, the uniform solution for (31) is performed when the terms that 

producing secular terms absent. At this stage, we add the solution of (31) without 

secular terms to the primary solution (30) to produce the final first-order approxi-

mate solution in the form 
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where the constants α  and β  are 
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As explained before, the result of removing the secular terms from equation (31) 

implied  
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The above solvability conditions used to formulate the following nonlinear frequency 

that corresponds to the non-resonance case: 
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where the constants sm'  are: 
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The requirement of all the eigenvalues for the characteristic equation (37) to be real 

needs all the four roots of (37) must be positive and real. From elementary algebra, 

the four roots are positive whence 
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There are three discriminants for the quartic polynomial to ensure the existences of 

the real roots [28]. The necessary and sufficient conditions, for all the eigen-values 

of (37) to be real, are  
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Conditions (39) and conditions (40) together represent the strict requirements to 

obtain the periodic solution.  

4.2. The sub-harmonic resonance case 

The sub-harmonic resonance case arises when the frequencyΩ  has equivalent 

to ω3 . In order to obtain periodic solutions and to study the stability behavior at 

this resonance case, we need to remove the additional secular terms that are found 

in equation (31). Removing of these secularity leads to formulate the approximate 

nonlinear frequency, which satisfied the following characteristic equation:  
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where sk '  are real constants listed below: 
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Accordingly, the uniform approximate first order solution has the final form: 
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where the amplitudeB in this case has the form 
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As mentioned before, the stability conditions are derived in the form 
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4.3. The super-harmonic resonance case 

When the frequency Ω has equivalent to ω
3

1 , then we have the so-called the 

super-harmonic resonance case. The first-order approximate solution of the forcing 

van der Pol-Duffing equation (20), without secular terms, is formulated in the 

following form: 
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where the amplitude B  is given by 

( )
( ) ( )

.

1036838885222519272152

8192

642232

4

64223

2

24

12

Ω−Ω+Ω−Ω+Ω−Ω+Ω−

Ω−Ω
−=

fffafffa

fa
B

  (47) 

As a result of the removing the secular terms from equation (31), taking into 

account the case of ω

3

1
=Ω , the characteristic equation has been evaluated in 

the following form: 
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The coefficients that appear in the above dispersion relation are: 
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Stability conditions can be performed as follows: 

Five changes of sign in the characteristic equation (48) signify the presence of 

positive roots. Therefore the requirements of positive roots are  
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The necessary and sufficient conditions for all roots of (48) to be real [28] are  
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Satisfying conditions (50) and conditions (51) together, ensure that the solution (46) 

has a periodic form. 
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5. Conclusions 

In this work, we present the basic theoretical efforts that are known in order 

to deal with non-trivial solutions of the van der Pol oscillator. We obtain analytic 

approximation solutions for the generalized cubic van der Pol-Duffing equation. 

We also construct a set of stability criteria in order to ensure the presence of the 

periodic solutions. The homotopy frequency method is used to derive an expression 

for approximate nonlinear frequency for the autonomous case. The derivation has 

been extended for the non-autonomous case where the forcing van der Pol’s equa-

tion is considered. A polynomial with a quadratic form in the nonlinear frequency 
2
ω  is obtained for the non-forcing van der Pol’s equation. In the presence of the 

forcing, tf Ωcos  the nonlinear frequency has formulated as a quadratic form in 
2
Ω  at the harmonic resonance case. In the case of the sub-harmonic resonance 

case, a polynomial of quartratic in 2
ω  has been imposed. In the final case, a quintic 

polynomial in 
2
Ω  has been governed the super-harmonic res case. Periodic solu-

tions are generated under an urgent condition on the frequency ω  to be a real 

quantity. This requires that all roots of the dispersion relations must be real and 

positive quantities. Satisfying these requirements imposes some conditions, for 

the first-time, known as the stability conditions.  
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