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Abstract. In this paper, we consider some classes of a system of nonlinear fractional
differential equations (FDEs) arising in some important physical phenomena. Using sym-
metry group of transformations, the given systems of fractional partial differential equations
(FPDEs) are reduced to systems of fractional ordinary differential equations (FODEs).
Further, using the group invariant condition, we solve the reduced systems of FODEs and
exact solutions of the given equations are constructed. Finally, the physical significance of
the solutions are investigated graphically based on the exact solutions in order to highlight
the importance of the study.
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1. Introduction

In recent years, the study of FDEs arising in nonlinear phenomena has drawn
much attention of many researchers, both from mathematical and physical points of
view. Many nonlinear coupled evolution equations with fractional order have been
established in order to describe a variety of non-classic phenomena such as fluid
mechanics, viscoelasticity, signal processing, systems identification, control theory,
finance and fractional dynamics [1–3]. Due to the wide applications in the field of
natural and social sciences, this subject emerges as a hot topic of research. The most
important advantage of using FDEs in these and other applications is their nonlo-
cal property. Building fractional mathematical models for specific phenomena and
developing numerical or analytical solutions for these fractional mathematical mod-
els are crucial issues in mathematics, physics, and engineering. The development of
the subject is contemporary to the classical calculus and was started with the letter
of L’Hopital’s to Liebniz asking, for the n-th order derivative of the linear function

f (x) = x is
Dnx
Dxn , what would the result be if n = 1/2? Later, Liouville, Riemann,
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Grunwald, Caputo, Letnikov, Jumarie etc extended it to an arbitrary order derivative.
In order to better understand these phenomena as well as further apply them in

practical life, it is important to seek their more exact solutions. However, given FDEs,
there exists no well-defined method to analyze and study them systematically as well
as dealing with exact explicit solutions. Many methods have been successfully used
by many engineers and scientific researchers to handle such problems. For example,
the solution of PDEs of fractional order, using the adomian decomposition method
is found in [4]. Whereas, the use of finite difference methods for the time FDEs,
the author refers to [5, 6]. The authors in [7], used the generalized differential trans-
form method and obtained the numerical solutions of the space-and time-fractional
coupled Burgers equations. The fractional variational iteration method and its appli-
cation is found in [8]. In [9], the sub-equation method has been used by the author to
find the exact solutions of nonlinear time fractional differential equations.

On the other hand, the FPDEs can be solved analytically using the application of
Lie group analysis. Lie symmetry analysis is one of the most powerful and system-
atic methods, which plays a very important role in finding an exact solution of such
nonlinear coupled evolution equations. For the theory of Lie group analysis and its
applications to differential equations we refer [10–13]. There are only few papers
which are devoted to group analysis of FDEs and group properties of FDEs are much
less understood. Scaling transformations of the time fractional linear wave-diffusion
equation and its group invariant solutions have been described in [14]. Using group
of scaling transformations, self similarity solutions to KdV system of equations are
obtained in [15]. Lie symmetries of the fractional nonlinear anomalous diffusion
equations are studied in [16]. Complete group classification and symmetry reduc-
tions of the fractional fifth-order KdV type of equations are performed in [17, 18].

The structure of the work in this article is organized as: in Section 2, we recall
some definitions and properties of the integral calculus which are used in the pre-
ceding sections. In Section 3, we present the application of the Lie group analysis
to derive the symmetric group of transformations under which the given systems of
equations remain invariant. In Section 4, as the application of the method we take
some physical examples and construct the particular exact solution for the corre-
sponding problems exhibiting the space and time relationship. Further, the nonlinear
property of the solutions with respect to fractional order derivative α is discussed
with the help of 2D and 3D-plots. Finally, in Section 5, we state our conclusion.

2. Preliminaries

In this section, we recall some definitions and properties of the fractional calculus
theory which may be used in our study and for more details we refer to [19, 20].

2.1. Definition
(a) Riemann-Liouville fractional derivative: The Riemann-Liouville fractional
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differential operator of order α > 0 of f(t) is given as

Dα
t f (x)=


1

Γ(n−α)

dn

dtn

∫ t

0
(t− τ)n−α−1( f (τ))dτ, n−1 < α < n, n ∈ N

dn

dtn f (t), α = n ∈ N,

(b) Caputo fractional derivative: For α ∈ (n−1;n), the fractional derivative of f is
given as

∗Dα
t f (t) =

1
Γ(n−α)

∫ t

0
(t−ξ )n−α−1( f n(τ))dτ, n−1 < α < n, n ∈ N

2.2. Properties of Riemann-Liouville fractional derivative
Here we recall some properties for the modified Riemann-Liouville derivative

which are used in the proceeding work:

(i) Dα
t tγ =

Γ(γ +1)
Γ(γ +1−α)

tγ−α , γ > n.

(ii) Dα
t [ f (x)g(x)] =

∞

∑
n=0

(α
k )D

x
t f (t)Dα−n

t g(x), (α
k ) =

Γ(α +1)
Γ(k+1)Γ(α +1− k)

.

(iii) Dα
a f (g(x))

=
(x−a)−α

Γ(1−α)
f (g(x))+

k

∑
m=1

(α
k )

k!(x−a)k−α

Γ(k−α−1) ∑
k=1

f (m)(g(x))∑
k

∏
r=1

1
ar!

(
g(r)(x)

r!

ar
)

,

where the sum extends over all combinations of non-negative integer values of

a1,a2,a3...ak such that
k

∑
r=1

rar = n and
k

∑
r=1

ar = m.

3. Symmetry analysis of fractional PDEs

This section deals with the brief discussion of lie symmetry analysis for nonlinear
FPDEs with two independent variables and one dependent variable. We consider the
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one parameter Lie group of transformation as follows:

x∗ = x+ εξ
x(x, t,u)+O(ε2),

t∗ = t + εξ
t(x, t,u)+O(ε2),

u∗ = u+ εη(x, t,u)+O(ε2),

∂ α ū
∂ t̄α

=
∂ αu
∂ tα

+ εη
0
α(x, t,u)+O(ε2),

∂ ū
∂ x̄

=
∂u
∂x

+ εη
x(x, t,u)+O(ε2),

∂ 2ū
∂ x̄2 =

∂ 2u
∂x2 + εη

xx(x, t,u)+O(ε2),

·
·
·

where

η
0
α =

∂ αη

∂ tα
+(ηu−Dt(ξ

t))
∂ αu
∂ tα
−u

∂ αηu

∂ tα
+µ

+
∞

∑
n=1

[
(α

n )
∂ nηu

∂ tα
− (α

n+1)D
n+1
t (ξ t)

]
Dα−n

t (u)

−
∞

∑
n=1

(a
n)D

n
t (ξ

x)Dα−n
t (ux) ,

and

µ =
∞

∑
n=2

n

∑
m=2

m

∑
k=2

k−1

∑
r=0

(a
n)(

n
m)(

k
r)

1
k!

tn−α

Γ(n+1−α)
[−u]r

∂ m

∂ tm [uk−r]
∂ n−m+kη

∂ tn−m∂uk

η
x = Dx(η)−uxDx(ξ

x)−utDx(ξ
t),

η
xx = Dx(η

x)−uxtDx(ξ
t)−uxxDx(ξ

x),

η
xxx = Dx(η

xx)−uxxtDx(ξ
t)−uxxxDx(ξ

x),

·
·
·

Here Dx denotes total order derivative and denoted as

Dx =
∂

∂x
+ux

∂

∂u
+uxx

∂

∂ux
+uxxx

∂

∂uxx
+ · · ··

The general vector field can be considered as

V = ξ
t(x, t,u)

∂

∂ t
+ξ

x(x, t,u)
∂

∂x
+η(x, t,u)

∂

∂u
,
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and we take the prolongation of this vector field depending on the highest order
derivative present in the given equation.

4. Application of the method

As the application of Section 3, we take the following examples and construct
the group invariant solutions.
Example 1: The well known coupled Burger’s equation with time fractional deriva-
tives, describing flow of stock wave under a viscous fluid is considered as [21]:

∂ αu
∂ tα

= uxx + k1uux−uvx− vux,

∂ αv
∂ tα

= vxx + k1vvx−uvx− vux, (1)

where u(x, t) and v(x, t) represents the wave profiles, the variables x and t respectively
represent the normalized space and time variables. The parameter α is standing for
the order of the fractional time derivative satisfying 0 < α < 1.

Following the straightforward calculation as in Section 3, we get the infinitesimal
transformations as follows

ξ
x = αC5x+C1, ξ

t = 2C5t +C3, η
u =−αC5u, η

v =−αC5v, (2)

where C1,C3,C5 are arbitrary constants. The infinitesimal generators associated with
(2), can be written as

X1 =
∂

∂x
, X3 = αx

∂

∂x
+2t

∂

∂ t
−αu

∂

∂u
−αv

∂

∂v
, X5 =

∂

∂ t
.

For the symmetry reduction we consider the generator X3 and the associated charac-
teristic can be written as below:

dx
αx

=
dt
2t

=
du
−αu

=
dv
−αv

,

From
dt
2t

=
du
−αu

, we get u = t−
α

2 U .

Where U is a function of ξ . Continuing similar calculations, we get the following
similarity variables

u = t−
α

2 U(ξ ), v = t−
α

2 V (ξ ), ξ = xt−
α

2 . (3)

The use of the above similarity variables in the sense of Riemann-Liouville deriva-
tives, the governing system of FPDEs (1), can be reduced to a nonlinear system of
FODEs, through the following theorem.
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Theorem: The similarity variables in (3) reduces (1) to the following nonlinear
system of FODEs:[

(1− 3α

2
− α

2
ξ

d
dξ

)(F−
α

2 ,
α

2
β

U)(ξ )

]
= Uξ ξ + k1UUξ −UVξ −VUξ ,[

(1− 3α

2
− α

2
ξ

d
dξ

)(F−
α

2 ,
α

2
β

V )(ξ )

]
= Vξ ξ + k1VVξ −UVξ −VUξ , (4)

Proof: For 0 < β < 1,

∂ β u
∂ tβ

=
1

Γ(1−β )

∂

∂ t

∫ t

0
(t− s)−β ( f (s))ds

=
1

Γ(1−β )

∂

∂ t

∫ t

0
(t− s)−β s−

α

2 U(xs−
α

2 )ds

and considering c =
α

2
, d =

α

2
, one can derive the Riemann-Liouville fractional

derivatives for the system of equations (1) as

∂ β u
∂ tβ

=
1

Γ(1−β )

∂

∂ t

∫ t

0
(t− s)−β s−dU(xs−c)ds. (5)

Putting τ =
s
t

and dτ =
1
t

ds, we get

∂ β u
∂ tβ

=
1

Γ(1−β )

∂

∂ t

[∫ 1

0
(1− τ)−β t1−d−β

τ
−dU(ξ τ

−c)dτ

]

=
∂

∂ t

[
t1−d−β (F−d,c

β
U)(ξ )

]
, (6)

where

(F−d,c
β

U)(ξ ) =
1

Γ(1−β )

∫ 1

0
(1− τ)−β

τ
−dU(ξ τ

−c)dτ.

is the Erdelyi-Kober fractional integral operator.
Using chain rule,

∂

∂ t
=

d
dξ

∂ξ

∂ t
=−α

2
ξ t−1 d

dξ
=−cξ t−1 d

dξ
,

with which equation (6) can be rewritten as

∂ β u
∂ tβ

= t−d−β

[
(1−d−β − cξ

d
dξ

)(F−d,c
β

U)(ξ )

]
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In the present work, as we take α = β , c =
α

2
and d =

α

2
, hence we obtain

∂ αu
∂ tα

= t
−3α

2

[
(1− 3α

2
− α

2
ξ

d
dξ

)(F−
α

2 ,
α

2
β

U)(ξ )

]
.

Similarly,

∂ αv
∂ tα

= t
−3α

2

[
(1− 3α

2
− α

2
ξ

d
dξ

)(F−
α

2 ,
α

2
β

V )(ξ )

]
Further, the reduced system of FODEs is obtained as[

(1− 3α

2
− α

2
ξ

d
dξ

)(F−
α

2 ,
α

2
α U)(ξ )

]
= Uξ ξ + k1UUξ −UVξ −VUξ ,[

(1− 3α

2
− α

2
ξ

d
dξ

)(F−
α

2 ,
α

2
α V )(ξ )

]
= Vξ ξ + k1VVξ −UVξ −VUξ , (7)

Exact solution: Here we construct the exact group invariant solution of the time-
fractional coupled Burger’s equation (1) as outlined in [22]. For that, let us first
introduce a function as below

U(ξ ) = Aξ
a, V (ξ ) = Bξ

b, ξ = xt−c, (8)

where A, B, a and b are arbitrary real constants are to be determined explicitly.
Applying the formula

Fa,b
β

(ξ k) =
1

1−β

∫ 1

0
(1− τ)−β

τ
a
ξ

k
τ
−bkdτ =

Γ(1+a−bk)
Γ(2+a−β −bk)

ξ
k (9)

Substituting (9) in (7), we get

Γ(1− α

2 −
α

2 a)

Γ(1− 3α

2 −
α

2 a)
Aξ

a = Aa(a−1)ξ a−2 +A2aξ
2a−1−ABaξ

a+b−1 +ABaξ
a+b−1,

Γ(1− α

2 −
α

2 b)

Γ(1− 3α

2 −
α

2 b)
Bξ

b = Bb(b−1)ξ b−2 +B2bξ
2b−1−ABaξ

a+b−1−ABbξ
a+b−1.

(10)

The exact group invariant solution of a system of equations (10) will exist if this
system of equations remains invariant with respect to the variable ξ . It can be clearly
noticed that the system of equations (10) will remain invariant with respect to ξ if
a = b = 1. Hence the value of the arbitrary constants A, B can be obtained as,

A =− Γ(1−α)

Γ(1−2α)
,

B =− Γ(1−α)

Γ(1−2α)
,
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which in turn produces the solution of original system of FPDEs as follows

u =− Γ(1−α)

Γ(1−2α)
(xt−

α

2 ),

v =− Γ(1−α)

Γ(1−2α)
(xt−

α

2 ), (11)

where the solution is defined.

Fig. 1. Nature of the solution u(x, t) and v(x, t)for fixed x and α = 0.6, α = 0.7 and α = 0.8
respectively

Fig. 2. 3D-plot of u(x, t) for α = 0.6, α = 0.7 and α = 0.8

Example 2: As the next example, we consider the time-fractional coupled Drinfeld-
-Sokolov-Satsuma-Hirota (DSSH) as [23]:

∂ α p
∂ tα
− 1

2
pxxx +3ppx−3qx = 0,

∂ αq
∂ tα

+qxxx−3pqx = 0, (12)

where p(x, t) and q(x, t) are the dependent variables and the variables x and t repre-
senting space and time respectively are the independent variables. The parameter α
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stands for the order of the fractional time derivative with 0 < α < 1.

Fig. 3. 3D-plot of v(x, t) for α = 0.6, α = 0.7 and α = 0.8

From the application of Lie group analysis and from the straight forward analysis
as in Section 3, we get a symmetric group of transformations

η
x = a3αx+a4, η

t = a1+3a3t, φ
p =−2αa3 p, φ

q =−4αa3q+F8(x, t), (13)

where a1,a2,a3 are arbitrary constants. F8(x, t) is function of the variable x and t. We
consider the finite dimensional Lie algebra for our computational purpose and the
infinitesimal generators associated with a1, a2 and a3 are given as follows:

Y1 =
∂

∂ t
, Y3 =

∂

∂x
,

Y2 = αx
∂

∂x
+3t

∂

∂ t
−2α p

∂

∂ p
−4αq

∂

∂q
. (14)

Since F8(x, t)
∂

∂q
is infinite dimensional, so we study only finite dimensional genera-

tors.
For the symmetric reduction of equation (12), we consider scaling transformation

X2 and we get the similarity variables by the method of characteristic as

p = t−
2α

3 P(η) q = t−
4α

3 Q(η) η = xt−
α

3 . (15)

Using the similarity variables from (15) and repeating the above analysis, the system
of FPDEs (12) can be reduced to a nonlinear system of ODEs of fractional order. As
a result, we get the following

[
(1− 5α

3
− α

3
η

d
dξ

)(F
− 2α

3 , α

3
β

P)(η)

]
=

1
2

Pηηη −3PPη +3Qη ,[
(1− 7α

3
− α

3
η

d
dξ

)(F
− 4α

3 , α

3
β

Q)(η)

]
= −Qηηη +3PQη . (16)
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Exact solution: In order to have the the group invariant solution, we consider
P(η) = K1η

a, Q(η) = K2η
b, η = xt−c, c =

α

3
. Following the similar analysis as in

Example 1, we get

Γ(1− 2α

3 −
α

3 a)

Γ(1− 5α

3 −
α

3 a)
K1η

a =
1
2

K1a(a−1)(a−2)ηa−3−3K2
1 aη

2a−1 +3K2bη
b−1,

Γ(1− 4α

3 −
α

3 b)

Γ(1− 7α

3 −
α

3 b)
K2η

b = −K2b(b−1)(b−2)ηb−3 +3K1K2bη
a+b−1. (17)

Fig. 4. Nature of the solutions u(x, t) and v(x, t) for fixed x and 0 < α < 1

Fig. 5. Nature of the solutions u(x, t) and v(x, t) for fixed t and 0 < α < 1

One can check that the reduced system of FODEs (17) will be invariant with
respect to the variable η for a = 1, and b = 2 whose intern yields the values of K1
and K2 as

K1 =
1
6

Γ(1−2α)

Γ(1−3α)
,

K2 =
1
6

[
Γ(1−α)

Γ(1−2α)
+

1
2

Γ(1−2α)

Γ(1−3α)

]
.

Hence the solution of original system of FPDEs (12) is given as

u =
1
6

Γ(1−2α)

Γ(1−3α)
(xt−

α

3 ),

v =
1
6

[
Γ(1−α)

Γ(1−2α)
+

1
2

Γ(1−2α)

Γ(1−3α)

]
(xt−

α

3 )2. (18)
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Fig. 6. 3D-plot of u(x, t) for α = 0.6, α = 0.625 and α = 0.65

Fig. 7. 3D-plot of v(x, t) for α = 0.55, α = 0.575 and α = 0.6

5. Conclusions

In our present study, some nonlinear time-fractional evolution equations which
occur in different areas of mathematical physics are considered. From the application
of the Lie group analysis we obtained a particular exact group invariant solutions for
the given FPDEs. Further, the effect of the fractional order α on the behavior of
the solutions is studied graphically. From Figures 1-7 it is observed that a change
in noninteger order derivative value α affects the solution behavior of the solution in
a fundamental way. Therefore we can conclude that the non-integer order derivative
can be used to modify the shape of the wave without changing the non-linearity and
the dissipative effect in the medium.
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