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Abstract. Thin plates of three different forms with different physical-mechanical character-

istics and free edges are examined in this work. Modeling of geometry and numerical calcu-

lation of frequencies and forms of free oscillation of plates is accomplished by the finite el-

ement method, which is realized using the licensed computer program FEMAP with the 

NASTRAN solver. A comparative analysis of the calculated eigenfrequencies is carried 

out. The dependence of the corresponding frequencies on the physical and mechanical 

characteristics of the material in the form of coefficients is established. 
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1. Introduction 

In many branches of modern technology, plates of various shapes are the most 

common elements of thin-walled structures. They are widely used in construction, 

engineering, electrical engineering and other fields of technology. As they are used 

in the designing and constructing of such structures, it is necessary to calculate their 

bearing elements in the event of a variety of sudden dynamic loads. The analysis  

of the dynamic behavior of plates of different shapes, taking into account various 

boundary conditions and properties of a material under dynamic load, is an actual 

problem. For two centuries, the fluctuations of rectangular plates were considered 

in a huge number of works. The review of some publications is given in work [1]. 

One of the first classical papers on the fluctuations of thin isotropic rectangular 

plates with free edges was the Treatise on Acoustic Cold [2]. Numerical calculation 

of frequencies and forms of free oscillations of a square plate by the variation 

method of Ritz is presented for the first time in [3]. 
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The classical problem of oscillations of a plate with free edges is considered in [1]. 

On the basis of the superposition method, its solution is reduced to a homogeneous 

quasi regular infinite system of linear algebraic equations. The accuracy of the  

homogeneous boundary conditions is examined, the comparison of theoretical data 

with the experimental data is carried out. 

Fluctuations of free polygonal and rounded polygonal plates with the aid of  

the improved Ritz method in the class of homology forms were investigated in [4]. 

The first five frequencies of oscillations and evolution of oscillations were presented. 

The problem of oscillations of a viscoelastic plate having the form of a right  

triangle is considered in [5]. 

Oscillations occur due to the action of a uniformly distributed load according to 

the harmonic law. The lines of the amplitude of oscillation levels are investigated, 

and graphs of the amplitude distribution along the height of the triangle are given. 

In comparison, with the analytical and experimental methods, numerous methods 

for solving the dynamics theory of plates and shells have gained wide practical  

application, such as the finite element method (FEM). Many modern software prod- 

ucts for engineering calculations have been built using FEM. One of the software 

products is FEMAP and the NX Nastran solution. The proposed software tool is used 

in several studies of determine the frequency and forms of free vibrations of thin 

cylindrical shells [6-8]. It also tested in the calculation of a rectangular plate [9]. 

A comparative analysis of the calculated eigenfrequencies of a square plate is 

carried out in [9] using the FEMAP computer program with frequencies obtained 

numerically and experimentally by other authors. 

The aim of this study is to determine the frequency and types of free oscillations 

of isotropic elastic plates of different shapes with free edges based on the finite  

element method and setting appropriate frequency depending on the physical and 

mechanical characteristics of the material in the form of coefficients. 

2. Output ratios  

The equation of dynamics for the FEM can be obtained by considering the 

equations of motion of a mechanical system with a finite number of degrees of 

freedom, which is described by the system of Lagrange II equations [10]. 

This equation of motion for a plate at its finite elemental approximation takes 

into account the absence of external forces ( )0=)(tF  will take the form: 
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we obtain the equation of motion of the shell in the absence of damping from the 

Lagrange equation (1): 

        0  KM ɺɺ .  (2) 

The solution of equation (1) can be sought in the form 

        tА cos , (3) 

where: {A} is the vector of amplitude values of nodal displacements, which deter-

mine the form of proper oscillations;  is a cyclic frequency,  is a phase of oscil-

lations. We obtain the system of algebraic equations after the direct substitution (3) 

in (2) and the reduction in:   tcos  

        02  AKM . (4) 

In this system, the non-zero components {A} of the components are possible  

only on condition that 

     2det 0 K M . (5) 

If the square matrices [M] and [K] are positive-defined, then equation (5) has  

N positive solutions - eigenfrequencies 
k 
, with possible dual values (here, N is  

a number of unknowns in the system of algebraic equations (4)). 

With the values N of eigenfrequencies 
k 
, the solution of system (2) can be 

found in the form of a linear combination N of expressions (3): 

      
1

cos  


 
N

k k k

k

А t . (6) 

In order to determine the frequencies and forms of free oscillations, if dissipa-

tion and damping are not taken into account, it is advisable to use the Lanczos 

method, which requires fewer resources (computing time and free hard disk space) 

compared to other methods [3]. 

3. Results 

For numerical solving of the tasks in this work, using the FEMAP license  

program, the geometry of three plates of regular shapes: a triangle, a quadrilateral, 

and a pentagon is constructed, in such a way that a circle of radius R = 60 mm  

can be entered each figure (Fig. 1). 

Note that the thickness of all plates is the same and a circular hole with a radius 

r = 6 mm is made in their centers. Models were rigidly fixed on the surface of the 

hole. Three different metals were selected as the material of the plates: 40X steel 
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(E  =  214  GPa - Young’s modulus, Poisson’s coefficient ν  =  0.32, density ρ = 

= 7820 kg/m
3
), aluminum (E = 110 GPa - Young’s modulus, Poisson’s coefficient 

ν = 0.34, density ρ = 2710 kg/m
3
), copper (Young’s modulus, Poisson coefficient 

ν = 0.35, density ρ = 8920 kg/m
3
). The breakdown was carried out with four-node 

plate elements of constant thickness in size 2 × 2 mm. 
 

 

Fig. 1. The geometry of three plates of regular shapes: a triangle, a quadrilateral, 

and a pentagon 

The reliability of the results obtained is ensured by the use of a sound mathe-

matical model, the correctness of the problem statement, the solution of the test 

problem [9], and the practical convergence of the calculated frequencies in the  

application of the finite element method. 

The spectrum of frequencies and forms of eigenvibrations of a triangular plate 

of constant thickness of three different metals was investigated. The frequencies  

of the first ten modes of their own oscillations are given in Table 1, and also in the  

table the frequency coefficients, which determine the dependence of the frequency 

of internal oscillations on the physico-mechanical characteristics of the material, 

namely the ratio of the Young’s modulus to density. The forms of oscillation  

at the corresponding frequencies are presented in Figure 2, where the displacement,  

for better visualization, is presented in a fourfold increase, as well as in two angles 

of observation. 

Table 1. The frequencies of the first ten modes of their own oscillations 

Moda 
f  [Hz] 

.

.

ϕ =
st

al

f

f
 

.

.

ϕ =
st

cop

f

f
 

Steel Aluminum Copper 

1 204.01 202.46 137.98 1.01 1.48 

2 204.03 202.47 137.99 1.01 1.48 

3 259.47 258.03 176.55 1.01 1.47 

4 512.96 516.33 349.64 0.99 1.47 

5 522.02 516.40 349.69 1.01 1.49 

6 804.85 796.89 540.56 1.01 1.49 

7 1061.06 1048.00 707.31 1.01 1.50 

8 1061.83 1052.12 714.65 1.01 1.49 

9 1061.89 1052.18 714.69 1.01 1.49 

10 1323.76 1305.71 878.86 1.01 1.51 

ϕ
average 

1.01 1.49 
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The spectrum of frequencies and forms of eigenvalues of a quadrangular plate 

was studied. The frequencies of the first ten modes of their own oscillations,  

together with the frequency coefficients, are given in Table 2. Forms of oscillations 

at corresponding frequencies are presented in Figure 3. 

The spectrum of frequencies and forms of eigenvalues of a pentagonal plate was 

studied. The frequencies of the first ten modes of their own oscillations, together 

with the frequency coefficients, are given in Table 3. The forms of oscillations at 

the corresponding frequencies are presented in Figure 4. 
 

    
Moda1 Moda2 

    
Moda3 Moda4 

    
Moda5 Moda6 

    
Moda7 Moda8 

    
Moda9 Moda10 

Fig. 2. The forms of oscillation 
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Table 2. The frequencies of the first ten modes of their own oscillations, together 
with the frequency coefficients 

Moda 
f  [Hz] .

.

ϕ =
st

al

f

f

 .

.

ϕ =
st

cop

f

f

 

Steel Aluminum Copper 

1 349.37 347.19 237.30 1.01 1.47 

2 349.56 347.40 237.47 1.01 1.47 

3 435.63 433.68 297.45 1.00 1.46 

4 480.33 474.12 319.59 1.01 1.50 

5 710.64 702.16 474.26 1.01 1.50 

6 1273.96 1258.92 850.52 1.01 1.50 

7 1274.04 1259.00 850.59 1.01 1.50 

8 1722.94 1706.17 1157.54 1.01 1.49 

9 1870.83 1845.26 1241.94 1.01 1.51 

10 2395.55 2368.02 1600.83 1.01 1.50 

ϕaverage 1.01 1.49 

 

    
Moda1 Moda2 

    
Moda3 Moda4 

    
Moda5 Moda6 

    
Moda7 Moda8 

    
Moda9 Moda10 

Fig. 3. Forms of oscillations 
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Table 3. The frequencies of the first ten modes of their own oscillations, together with 
the frequency coefficients 

Moda 
f  [Hz] .

.

ϕ =
st

al

f

f

 .

.

ϕ =
st

cop

f

f

 

Steel Aluminum Copper 

1 404.43 402.06 275.05 1.01 1.47 

2 404.64 402.29 275.24 1.01 1.47 

3 502.35 500.19 343.21 1.00 1.46 

4 645.36 637.36 430.10 1.01 1.50 

5 645.45 637.46 430.18 1.01 1.50 

6 1472.68 1455.21 983.01 1.01 1.50 

7 1472.70 1455.23 983.03 1.01 1.50 

8 2077.02 2048.66 1378.91 1.01 1.51 

9 2366.44 2341.73 1586.38 1.01 1.49 

10 2366.68 2341.97 1586.57 1.01 1.49 

ϕaverage 1.01 1.49 

 

    
Moda1 Moda2 

    
Moda3 Moda4 

    
Moda5 Moda6 

    
Moda7 Moda8 

    
Moda9 Moda10 

Fig. 4. The forms of oscillations 
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For comparison, we will present the first ten frequencies of steel plates of  

different shapes in the form of histograms (Fig. 5) and Table 4.  

 

 

Fig. 5. The first ten frequencies of steel plates of different shapes 

Table 4. The first ten frequencies of steel plates of different shapes 

Moda 
f  [Hz] 

Triangular Quadrilateral Pentagon 

1 204.01 349.37 404.43 

2 204.03 349.56 404.64 

3 259.47 435.63 502.35 

4 512.96 480.33 645.36 

5 522.02 710.64 645.45 

6 804.85 1273.96 1472.68 

7 1061.06 1274.04 1472.7 

8 1061.83 1722.94 2077.02 

9 1061.89 1870.83 2366.44 

10 1323.76 2395.55 2366.68 

4. Conclusions 

A numerical calculation of frequencies and forms of free oscillations of a trian-

gular, quadrangular and pentagonal plate with free edges has been carried out. 

There is an increase in its own frequency with an increase in the angles of the plate, 

which is explained by an increase in the strength of the plate. In the future it is  

necessary to explore the plates with more angles. 

Three materials (steel, aluminum and copper) are considered for the analysis  

of the influence of material characteristics on dynamic characteristics. Analyzing 

the obtained data, we can conclude that the frequencies of free oscillations with  

the same geometric parameters of the plate of steel and aluminum have a slight  

triangular 

quadrangle 

pentagon 

Hz 
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difference due to the small difference in the velocity of the propagation of the bulk 

expansion, which depends on the Young modulus and the density of the material. 

The frequencies for a copper plate, with an identical geometry, are, on average, 

1.49 times smaller than the corresponding frequencies of the shells of steel. Note 

that the corresponding coefficients are obtained in [8] for other research objects  

of the same materials. 
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