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Abstract. The article is aimed at the development of the analytical approach for evaluating 

the parameters of the Basset force acting on a particle in two-dimensional fluid flow  

induced by the oscillating wall. By applying regression analysis, analytical expressions  

to determine complementary functions were established for evaluating the Basset force. 

The obtained dependencies were generalized using the infinite power series. As a result  

of studying the hydrodynamics of a two-phase flow, analytical dependencies to determine 

the Basset force were proposed for assessing its impact on particles of the dispersed phase 

in a plane channel with the oscillating wall. It was discovered that the Basset force affects 

larger particles. However, in the case of relatively large wavelengths, its averaged value for 

the vibration period is neglected. Additionally, the value of the Basset force was determined 

analytically for the case of relatively small wavelengths. Moreover, it was discovered  

that its impact can be increased by reducing the wavelength of the oscillating wall. 
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1. Introduction 

There is a number of forces of different nature acts on fine particles of the dis-

persed phase in the multiphase flow under the vibration and acoustic fields. In this 

case, one of the most incompletely unexplored in terms of analytical calculation is 

the Basset force. For example, articles [1, 2] show that this force affects the direction 

of particles drift in a standing wave. And the phenomenon of a particles drift for 

the dispersed phase is widespread in the technology of purification and coagulation. 
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The dynamics of a single particle in a wave field is detailed and considered  

in the articles [3, 4]. Particularly, it is shown that there is a wave force acting upon 

the particle that predetermines the average acceleration of the particle for the period 

of oscillation. P.J. Westervelt showed that one of the reasons for the phenomenon of 

particles drift is the nonlinearity of the resistance distribution law [5]. This fact leads 

to the existence of higher harmonics in the solution of the Langevin equation [6] 

describing the stochastic motion of particles in a turbulent flow bounded by walls. 

Additionally, based on the Kolmogorov’s Lagrangian similarity law [7], asymptotic 

expressions for turbulent energy dissipation are obtained, and expressions similar 

to Onsager reciprocal relations are defined for describing several non-equilibrium 

processes (e.g. heat transfer, diffusion) simultaneously occurring in a closed  

macroscopic environment and mutually affecting each other [8]. Moreover, the 

limiting transformation of the Langevin equation determines the equation of diffu-

sion for the case of dispersed impurities in a flow with turbulence due to the walls. 

Investigation of the stochastic turbulent motion of particles based on the Lange-

vin equation contains the assumption that the acceleration of a liquid particle is  

a delta-correlated random process. In this case, the correlation function is condition- 

ally expressed in terms of the Dirac delta function. The justification of the reliabil-

ity of this assumption in the theory of turbulence is the experimentally confirmed 

fact that acceleration is determined by the small-scale “viscous” motions (relative 

to the Kolmogorov scale) [9, 10]. 

On the other hand, scientists pay sufficient attention to the study of particles 

drift in inhomogeneous wave fields, e.g. for the case of a periodic shock wave of 

the resonator. Particularly, L.V. King obtained the formula for radiation pressure 

[11]. As a result, aerosol particles in a flow with a relatively low density are drift-

ing towards the antinodes. And conversely, relatively light particles are drifting  

to the wave nodes. Additionally, these formulas are generalized for the case of  

a compressible medium [12] and are experimentally confirmed [13]. 

The article [14] is devoted to studying the aerosol particles in a plane standing 

wave for the case of small Reynolds numbers and relatively low frequencies of  

the vibration impact. As a result, the theory of inclusion drift is proposed consider-

ing the Stokes, added mass and Basset forces. 

The Basset force is one of the components of the resistance force acting upon 

particles in a viscous fluid. Generally, this force is determined by integrating  

the pressure function on the surface of the body. In this case, the pressure field is 

determined as a solution of the system of the Navier-Stokes and continuity equa-

tions [15]. After neglecting the local and convective inertia forces, the Stokes force 

is obtained for a particle of the spherical form in a fluid flow. This force is propor-

tional to the relative velocity of the particle. Subsequently, Boussinesq and Basset 

independently obtained a more accurate analytical solution for the case of neglecting 

the convective forces of inertia only. As a result, the resistance force is obtained 

with the following three components: the force of added mass proportional to  

the relative acceleration of the particle in the flow, the Stokes force calculated  

previously, and the Basset force [16]: 
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where: dp - particle diameter [m]; ρ, μ - density and dynamic viscosity of the medium, 

respectively [kg/m
3
] and [Pa·s]; v, vp - medium and particle velocities, respectively 

[m/s]; t - time; θ - integration variable as a time parameter [s]. 

Thus, the Basset force depends both on the vector of relative acceleration of the 

particle in the flow and on its values at all previous time moments. And now it is 

confirmed that for a given density of inclusions there is a limiting frequency, above 

which the wave force changes the sign. Moreover, it is proved that the Basset force 

substantially affects the limiting frequency. 

Due to the abovementioned, despite a large number of studies of particles drift, 

the problem of determining the Basset force and its impact on fine particles of the 

disperse phase is an open issue. Consequently, the main aim of the research is to 

develop an approach for analytically calculating the parameters of the Basset force 

acting on particles in fluid flow induced by the oscillating wall. 

2. Research methodology 

2.1. Previous approximation of the Basset force 

For relatively inert particles, when its relative velocity is insignificant compared 

to the flow velocity (|vp| << |v|), the specific Basset force fB [m/s
2
] (per unit mass  

of particle mp = ρp·πdp
3
/6 [kg]) is determined by the following dependence: 
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As it was obtained previously in articles [17-19], the vibration impact of  

an oscillating wall to the flow leads to a change of the particle velocity by a periodic 

law, which is a superposition of several components. 

Due to the nonlinearity of the specific Basset force (2) in terms of the flow  

velocity, its value can be determined by adding the corresponding components for 

each of the harmonics. Considering the expression for the acceleration component 

of each harmonic:  

   0/ sindv t dt a t  (3) 

for the amplitude a0 and vibration frequency ω, the following formula can be written: 

  0 , ,B B sf a C i t   (4) 

where the dimensional parameter of the Basset function is introduces [s
 –1/2

]: 

  9 / /B p pC d    (5) 
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and the complementary function is: 
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
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Thus, the problem of determining the Basset force acting on a particle of the 

dispersed phase in two-phase flow is reduced to obtaining the approximate analyti-

cal expression for the complementary function is(t, ω). 

It should be noted that the numerical integration of the right part of the expres-

sion (6) for a wide range of frequency values (from 0.01 rad/s to 10
5
 rad/s) allows 

one to conclude that the evaluated function is(t, ω) can be presented with the phase 

shift π/4 in the following form: 

      , sin / 4 , si t A t     (7) 

where A(ω) - amplitude-frequency function, which is tabulated in Table 1. 

Table 1. Tabulation of the amplitude-frequency function 

No. 
Frequency  

ω [rad/s] 

Amplitude  

A [s1/2] 
No. 

Frequency  

ω [rad/s] 

Amplitude  

A [s1/2] 

1 0.01 18.2 8 100 0.18 

2 0.1 5.8 9 150 0.15 

3 1 1.76 10 200 0.13 

4 5 0.81 11 500 0.08 

5 10 0.57 12 103 0.057 

6 25 0.36 13 104 0.018 

7 50 0.25 14 105 0.006 

 

Moreover, an asymptotic approximation of the function A(ω) to zero under the 

limitation ω → ∞, as well as its infinite growth under the limitation ω → 0 allows 

one to propose the following expression for the amplitude-frequency function: 

   / . nA c   (8) 

where: c - dimensionless coefficient, n - power factor, which is equal to 0.5 due to 

the dimension of the amplitude-frequency function. 

The dimensionless coefficient a is determined using the regression analysis 

based on the least square method. In this case, the error function is the total quad-

ratic deviation of values (8) for n = 0.5 from the values tabulated in Table 1: 

    2

1

/ min,
N

i i

i

R c c A


    (9) 

where: Ai - i-th tabulated value of the amplitude-frequency function for the related 

frequency ωi, N = 14 - total number of the tabulated data. 
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Minimization of the error function by the procedure of finding its first derivative 

with respect to the argument c:  
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allows one to obtain the linear regression formula for the evaluated parameter c: 
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Substitution of values from Table 1 to the expression (11) allows one to estimate 

the dimensionless coefficient: c = 1.82. 

The accuracy of the proposed approach is graphically illustrated in Figure 1  

by comparing the expression (8) for the parameters c = 1.82 and n = 0.5 with  

the numerical data presented in Table 1. 

 

 

Fig. 1. Comparison of the theoretical curve with the numerical calculation data 

Thus, the complementary function (6) is determined by the following analytical 

dependence: 
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Similar to the above procedure, the following expression for another comple-

mentary function can be defined: 
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2.2. Clarification of the complementary functions 

In the previous item, the Basset force was determined by applying the regression 

analysis to the tabulated amplitude-frequency response. This approach requires 

clarification both in terms of the dimensionless constant c and the phase shift π/4. 

Therefore, the approach to more accurately justify the proposed analytical depend-

encies for determining the Basset force is presented below. 

Applying the following change of parameters in the formula for the comple-

mentary function is(ω, t) 
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allows rewriting equation (6) in the following form: 
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where the following functions are introduced: 
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Decomposition of these integral expressions into the following infinite power 

series [20, 21] with respect to the dimensionless parameter φ0 allows writing: 
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The proposed formula (7) considering the expression (8) for the complementary 

function is is a special case of the following general dependence: 

      , sin ,   s

c t
i t t t  


 (18) 

where c(t), ψ(t) - dimensionless time and phase functions, respectively, which are 

determined by comparing the expressions (15) and (18): 
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Thus, using the basic trigonometric correlations, it can be obtained: 
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Due to the fact that both of the dimensionless time function c(φ0) and the phase 

function ψ(φ0) deviate from their mean values, the averaging procedure can be  

applied: 
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which coincides with the previous expressions (12), (13). 

3. Results 

3.1. Evaluation of the Basset force 

The motion of a dropped fluid-dispersed flow in a plane channel is considered. 

The flow is bounded by two walls along the flow. The first one is stationary, and 

the second one monoharmonically oscillates with the amplitude value of vibration 

velocity a [m/s], vibration frequency ω0 [rad/s], and wavelength L = 2π/λ [m].  

The design scheme is presented in Figure 2. 

 

 

Fig. 2. The design scheme 

To determine the Basset force, it is necessary to take the expressions for the  

acceleration components for a particle in the flow [22]: 
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where: h - channel width [m], u0 - inlet velocity [m/s], λ - wave parameter [m
–1

], 

κ1, κ2 - dimensionless coefficients. 

Particularly, for relatively small wavelengths (λ >> ω0/u0): 
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In an extreme case (λ >> ω0/u0), and considering the identities for the transfor-

mation of the products of trigonometric functions into their sums, the following 

expressions for the components of the specific Basset force can be obtained: 
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In this case, the maximum value of the Basset force 

  max 2 2 2 2
1 2 0max 1.82 [(6 / ) ] / 2.   B Bx By Bf f f C a h u     (25) 

The analysis of the obtained dependencies shows that the Basset force is directed 

toward the concavities of the particle’s trajectory in a flow that enforces the particle 

to oscillate near the local pressure zones. Additionally, the Basset force periodically 

changes the direction with the frequency π/(λu0) and decreases when particles are 

removed from the oscillating wall. Particularly, considering the values of dimen-

sionless parameters near the oscillating wall are κ1 = 0 and κ2 = 1, its maximum 

value is determined by the following expression: 

 
max

0 0 0| 1.82 / 2. B B y Bf f C a u  (26) 
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The angle θ of the Basset force deviation from the direction of the internal  

normal to the oscillating wall is determined by the following dependence: 

 1
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f
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
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This angle is equal to 0° near the oscillating wall and equal to 90° near the  

stationary wall (Fig. 3b). 
 

a) b) 

 
Fig. 3. The Basset force (a) acting on a particle at a given time, and its vector field (b) 

3.2. Impact of the Basset force on a particle 

Additionally, a relationship between the specific Basset force acting on a parti-

cle and flow acceleration in related point can be established. For the case of 

λ >> ω0/u0, the components of the flow acceleration become simplified: 
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and the maximum acceleration is equal to 

  2 2 2 2
max 0 1 2max [(6 / ) ].   x ya a a u h     (29) 

Comparing expressions (25) and (29) considering the dependence (2) the fol-

lowing expression can be found: 

 max
max

0

1.82
.

2
 B

B p

C a
F m a

u
 (30) 

The impact of the Basset force on the particles’ dynamic in a fluid-dispersed 

flow can be evaluated by the dimensionless parameter as the ratio of the maximum 

components of the specific Basset force to the corresponding components of the 

vibration force. Particularly, considering the parameter β, the following expression 

for the impact of the Basset force on a particle is proposed: 
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Thus, the Basset force affects the larger particles. Moreover, the impact of  

the Basset force on particles of the disperse phase can be increased by reducing  

the vibration wavelength. 

4. Conclusions 

Thus, the analytical dependencies for determining the Basset force acting on 

particles of the dispersed phase in multiphase flow is proposed. The corresponding 

expressions are substantiated theoretically using both regression analysis and ex-

tending the complementary functions to infinite power series. 

As a result of the numerical simulation, the Basset vector field is obtained. 

Moreover, the analysis of the obtained analytical dependencies shows that this 

force is directed towards the concavities of particles’ trajectories in a flow. This 

fact proves the oscillations of particles relative to the local pressure zones. It has 

been additionally determined that the Basset force periodically changes its direc-

tion with the frequency π/(λu0), and decreases when particles are removed from  

the vibrating wall. 

A dimensionless criterion is proposed for determining the impact of the Basset 

force on particles of the dispersed phase in the flow with superimposed vibrations. 

As a result, it is determined that the Basset force affects particles of greater diameter, 

and the degree of its influence increases with a decrease of the vibration wavelength. 

These facts are the scientific foundation for ensuring the selective separation of 

multicomponent geterogeneous systems. 
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