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Abstract. A class of third order singularly perturbed delay differential equations of reaction
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1. Introduction

We consider the following class of third order singularly perturbed delay differ-
ential equations of reaction diffusion type with integral boundary condition:

−εu′′′(x)+b(x)u′(x)+ c(x)u(x)+d(x)u′(x−1) = f (x), x ∈ (0,2),

u(x) = φ(x), x ∈ [−1,0], φ ∈C1[−1,0] u′(2) = ε

2∫
0

g(x)u′(x)dx+ l,
(1)

where 0< ε << 1, b(x)≥α ≥ 0, θ ≤ c(x)≤ θ0≤ 0, γ ≤ d(x)≤ γ0≤ 0, α+θ +γ > 0,

g(x) is nonnegative and monotone with
2∫

0

g(x)dx < 1 and b(x),c(x),d(x), f (x),g(x)

are sufficiently smooth on Ω̄ = [0,2] and l be a real number. Define Ω1 = (0,1),
Ω2 = (1,2), Ω

∗ = Ω1∪Ω2, Ω̄
2N = {0,1,2, . . . ,2N}, Ω

2N
1 = {1,2, . . . ,N−1}, Ω

2N
2 =

= {N +1,N +2, . . . ,2N−1} and Ω
∗2N = Ω

2N
1 ∪Ω

2N
2 .

A differential equation is said to be singularly perturbed delay differential equa-
tion, if it includes at least one delay term, involving unknown functions with various
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different arguments and also the highest derivative term is multiplied by a small pa-
rameter ε . It is well known that the standard numerical methods used for solving
singularly perturbed differential equations are not well posed and fail to give an ana-
lytical solution when the perturbation parameter ε is small. Therefore, it is necessary
to improve suitable numerical methods which are uniformly convergent to solve the
problem. Some authors have worked on singularly perturbed differential equations
with delay using uniformly convergent numerical methods [1–6].

Differential equations with integral boundary conditions is an important class of
problems arising in the fields of electro chemistry [7], thermo elasticity [8], heat
conduction [9] etc.

In the present paper, motivated by the works of [6, 10–12], we analyze a fitted
finite difference scheme on a piecewise uniform mesh for the numerical solution of
third order singularly perturbed delay differential equation of reaction diffusion type
with an integral boundary condition.

This paper is arranged in the following manner. In Section 2, the maximum prin-
ciple, stability result and derivative estimate are derived for the continuous problem.
The discretized problem is discussed in Section 3. An error estimate for the numer-
ical method is established in Section 4. We carried out numerical experiments in
Section 5. The paper concludes with a discussion given in Section 6.

2. Statement of the problem

The boundary value problem (1) can be transformed into the following equivalent
problem:

Find ū= (u1,u2), u1 ∈ X1 =C0(Ω̄)∩C1(Ω∪{2}) and u2 ∈ X2 =C0(Ω̄)∩C1(Ω)∩
C2(Ω∗) :

L1ū(x) = u′1(x)−u2(x) = 0, x ∈Ω∪{2} (2)

L2ū(x) =

{
−εu′′2(x)+b(x)u2(x)+ c(x)u1(x) = f (x)−d(x)φ ′(x−1), x ∈Ω1

−εu′′2(x)+b(x)u2(x)+ c(x)u1(x)+d(x)u2(x−1) = f (x), x ∈Ω2
(3)

where ū(x) = (u1(x),u2(x)) with the boundary conditions

u1(0) = φ(0), u2(0) = φ
′(0), u2(1−) = u2(1+),

u′2(1
−) = u′2(1

+), Ku2(2) = u2(2)− ε

2∫
0

g(x)u2(x)dx = l. (4)

The norm used for studying the convergence of the numerical solution is supre-
mum norm defined by ‖u‖Ω∗ := sup

x∈Ω∗
|u(x)|.
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Theorem 1 (Maximum Principle) Let ū(x) = (u1(x),u2(x)) be any function satisfy-
ing u1(0)≥ 0,u2(0)≥ 0, Ku2(2)≥ 0, L1ū(x)≥ 0, x ∈Ω∪{2}, L2ū(x)≥ 0,∀ x ∈Ω

∗

and [u′2](1)≤ 0. Then ū(x)≥ 0, ∀ x ∈ Ω̄. 2

PROOF Define s̄(x) = (s1(x),s2(x)) as s1(x) = 1+ x, x ∈ Ω̄ and

s2(x) =


1
8
+

x
2
, x ∈ [0,1]

3
8
+

x
4
, x ∈ [1,2].

Note that s̄(x) > 0, x ∈ Ω̄, L1s̄(x) > 0, L2s̄(x) > 0, s1(0) > 0, s2(0) > 0 and
Ks2(1)> 0. Further we define

µ = max
{

max
x∈Ω̄

(
−u1(x)
s1(x)

)
,max

x∈Ω̄

(
−u2(x)
s2(x)

)}
.

Then there exists at least one x0 ∈Ω, such that
(
−u1(x0)

s1(x0)

)
= µ or

(
−u2(x0)

s2(x0)

)
= µ

or both. Also (ū+ µ s̄)(x) ≥ 0̄, x ∈ Ω̄. Therefore either (u1 + µs1) or (u2 + µs2)
attains minimum at x = x0. Suppose the theorem does not hold true, then µ > 0.
Case (i): Assume that (u1+µs1)(x0) = 0, for x0 = 0. Therefore (u1+µs1) attains its
minimum at x = x0. Then,

0 = (u1 +µs1)(0) = u1(0)+µs1(0)> 0.

Case (ii): Assume that (u1 + µs1)(x0) = 0, for x0 ∈ Ω∪{2}. Therefore (u1 + µs1)
attains its minimum at x = x0. Then,

0 < L1(ū+µ s̄)(x0) = (u1 +µs1)
′(x0)− (u2 +µs2)(x0)≤ 0.

The proof for the operators L2(ū+ µ s̄)(x0) and K(ū+ µ s̄)(x0) are similar cases
refer [6].

Observe that in all the cases we arrived at a contradiction. Therefore µ > 0 is not
possible. Hence ū(x)≥ 0,∀ x ∈ Ω̄. �

Corollary 1 (Stability Result) The solution ū(x) of problem (2)− (4) satisfies the
bound

|ui(x)| ≤C max{|u1(0)|, |u2(0)|, |Ku2(1)|, ||L1ū||Ω̄, ||L2ū||Ω∗}, x ∈ Ω̄, i = 1,2.

PROOF Refer [6]. �

Bounds for the derivatives of the solution ū(x) are given in the following lemma.

Lemma 1 Let ū(x) be the solution of (2)− (4). Then we have the following bounds:

||u(k)1 || ≤Cε
(1−k)/2, k = 1,2,3,

||u(k)2 || ≤Cε
−k/2, k = 1,2,3. 2
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PROOF Refer [6]. �

The Shishkin decomposition of the solution ū(x) of (2)−(4) is ū(x)= v̄(x)+w̄(x),
where v̄(x) = (v1(x),v2(x)) and w̄(x) = (w1(x),w2(x)) are regular and singular com-
ponents respectively. The regular component v̄(x) can be written as v̄(x) = v̄0(x)+
+ ε v̄1(x), where v̄0 = (v01,v02) and v̄1 = (v11,v12) satisfy the following equations:{

L1v(x) = v′11(x)− v12(x) = 0, x ∈ Ω̄

v11(0) = φ(0),
(5)


L2v̄1(x) =−εv′′12(x)+b(x)v12(x)+ c(x)v′′11(x) = v′′02(x), x ∈Ω1

L2v̄1(x) =−εv′′12(x)+b(x)v12(x)+ c(x)v′′11(x)+d(x)v12(x−1) = v′′02(x), x ∈Ω2

v̄1(0) = 0, v̄1(1) = 0, Kv̄1(2) = 0.
(6)

Layer component w̄(x) = (w1(x),w2(x)) is the solution of{
L1w̄(x) = w′1(x)−w2(x) = 0,
w1(0) = 0.

(7)


L2w̄(x) =−εw′′2(x)+b(x)w2(x)+ c(x)w1(x) = 0, x ∈Ω1

L2w̄(x) =−εw′′2(x)+b(x)w2(x)+ c(x)w1(x)+d(x)w2(x−1) = 0, x ∈Ω2

w̄(0) = ū(0)− v̄(0), [w̄](1) =−[v̄](1), Kw̄2(2) = Kū2(2)−Kv̄2(2).

(8)

We further decompose w̄(x) as w̄(x) = w̄L(x)+ w̄R(x).

The left layer components w̄L(x) are the solutions of the following problems:
Find w̄L(x) ∈ Y such that

L1w̄L(x) = 0, x ∈ Ω̄, w̄L(0) = 0
L2w̄L1(x) = 0, x ∈Ω1, w̄L1(0) = w(0), w̄L1(1) = 0
L2w̄L2(x) = 0, x ∈Ω2, w̄L2(1) = Ā, w̄L(2) = 0.

(9)

Further the right layer components w̄R(x) are the solutions of the following prob-
lems:

Find w̄R(x) ∈ Y such that
L1w̄R(x) = 0, x ∈ Ω̄, w̄R(0) = 0
L2w̄R1(x) = 0, x ∈Ω1, w̄R1(0) = 0, w̄R1(1) = Ā1.

L2w̄R2(x) = 0, x ∈Ω2, w̄R2(1) = 0, Kw̄R2(2) = Kw̄(2).

(10)

where Ā and Ā1 are constants to be chosen in order to satisfy the jump conditions
at the point x = 1.
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Lemma 2 The regular component v̄(x) satisfies the following bounds.

‖vk
1‖Ω∗ ≤ C(1+ ε

−(k−3)/2), for k = 0,1,2,3 (11)

‖vk
2‖Ω∗ ≤ C(1+ ε

−(k−2)/2), for k = 0,1,2,3 (12)
2

PROOF Integrating the reduced problem of (2)− (4) and (5)− (6) and using the
Corollary 1, the inequality (11)− (12) can be proved easily. �

Lemma 3 The singular component w̄(x) satisfies the following bounds.

|wk
R1(x)| ≤Cε

−(k−1)/2exp(
−(2− x)

√
α√

ε
), x ∈ Ω̄, k = 0,1,2,3 (13)

|wk
R2(x)| ≤Cε

−k/2


exp(
−(1− x)

√
α√

ε
), x ∈Ω1, k = 0,1,2,3

exp(
−(2− x)

√
α√

ε
), x ∈Ω2, k = 0,1,2,3

(14)

|wk
L1(x)| ≤Cε

−(k−1)/2exp(
−x
√

α√
ε

), x ∈ Ω̄, k = 0,1,2,3 (15)

|wk
L2(x)| ≤Cε

−k/2


exp(
−x
√

α√
ε

), x ∈Ω1, k = 0,1,2,3

exp(
−(x−1)

√
α√

ε
), x ∈Ω2, k = 0,1,2,3

(16)
2

PROOF To prove the inequalities (13)−(14), consider the barrier functions Φ̄
±(x) =

= (Φ±1 (x),Φ
±
2 (x)), where

Φ
±
1 (x) =C

√
εexp(

−(2− x)
√

α√
ε

)±wR1(x), x ∈ Ω̄

Φ
±
2 (x) =C


exp(
−(1− x)

√
α√

ε
), x ∈Ω1

exp(
−(2− x)

√
α√

ε
), x ∈Ω2

±wR2(x)

It is easy to see that Φ
±
1 (0)≥ 0 and Φ

±
2 (0)≥ 0, for a suitable choice of C > 0. Further,

KΦ
±
2 (2) = Φ

±
2 (2)− ε

2∫
0

g(x)Φ±2 (x)dx≥C[1− ε

2∫
0

g(x)dx]±KwR2(2)≥ 0.
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Also L1Φ1(x) ≥ 0 and L2Φ2(x) ≥ 0. By Theorem 1, we have a right layer bound.
Integration of (10) yields the estimates of |w′R(x)|. From the differential equations
(10), one can derive the rest of the derivative estimates (13)-(14).

Similarly, the bounds for left layer components (15)− (16) can be derived. �

3. The discrete problem

3.1. Mesh selection procedure

The boundary value problem (2)− (4) exhibits strong boundary layers at x = 0,
x = 2 and interior layers(left and right) at x = 1.

The interval [0,1] is partitioned into three piecewise uniform Shishkin meshes
as: [0,1] = [0,σ ]∪ [σ ,1−σ ]∪ [1−σ ,1]. Similarly, [1,2] is partitioned into three
piecewise uniform Shishkin meshes as: [1,2] = [1,1+σ ]∪ [1+σ ,2−σ ]∪ [2−σ ,2],

where σ is the transition parameter defined by σ = min{1
4
,2
√

ε

α
lnN}. The discrete

problem corresponding to (2)− (4) is:
Find Ū(xi) = (U1(xi),U2(xi)) such that{

LN
1 Ū(xi) = D−U1(xi)−U2(xi) = 0,

LN
2 Ū(xi) =−εδ

2U2(xi)+b(xi)U2(xi)+ c(xi)U1(xi)+d(xi)U∗2 (xi) = f ∗(xi),
(17)


U1(x0) = φ(0), U2(x0) = φ(0), D−U2(xN) = D+U2(xN),

KNU2(x2N) =U2(x2N)− ε

2N

∑
i=1

g(xi−1)U2(xi−1)+g(xi)U2(xi)

2
hi = l,∀xi ∈ Ω̄

2N .

(18)
where:

δ
2U2(xi) =

1
h̄i

(
U2(xi+1)−U2(xi)

hi+1
−U2(xi)−U2(xi−1)

hi

)
,

D−U2(xi) =
U2(xi)−U2(xi−1)

hi
.

f ∗(xi) =

{
f (xi)−d(xi)φ

′(xi−1), xi ∈Ω1
2N ∩ Ω̄

2N

f (xi), xi ∈Ω2
2N ∩ Ω̄

2N .

U∗2 (xi) =

{
0, xi ∈Ω1

2N ∩ Ω̄
2N

U2(xi−N) xi ∈Ω2
2N ∩ Ω̄

2N .
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4. Analysis of the method

Theorem 2 (Discrete Maximum Principle) Let Ψ̄(xi) = (Ψ1(xi),Ψ2(xi)) be the
mesh function satisfying Ψ1(x0) ≥ 0, Ψ2(x0) ≥ 0, KN

Ψ2(x2N) ≥ 0, LN
1 Ψ̄(xi) ≥ 0,

LN
2 Ψ̄(xi)≥ 0, and [D]Ψ2(xN)≤ 0. Then Ψ̄(xi)≥ 0, xi ∈ Ω̄

2N . 2

PROOF Define S̄(xi) = (S1(xi),S2(xi)), where S1(xi) = 1+ xi, xi ∈ Ω̄
2N and

S2(xi) =


1
8
+

xi

2
, xi ∈Ω

2N
1 ∩ Ω̄

2N

3
8
+

xi

4
, xi ∈Ω

2N
2 ∩ Ω̄

2N .

Note that Sk(xi) > 0, xi ∈ Ω̄
2N , k = 1,2, LN

1 S̄(xi) > 0,∀xi ∈ Ω̄
2N ∩Ω ∪ {x2N},

LN
2 S̄(xi)> 0,∀xi ∈ Ω̄

2N ∩Ω
∗. Let

γ = max
{

max
xi∈Ω̄2N

(
−Ψ1(xi)

S1(xi)

)
, max

xi∈Ω̄2N

(
−Ψ2(xi)

S2(xi)

)}
.

Then there exists one xk ∈ Ω̄
2N such that (Ψ1 + γS1)(xk) = 0 or (Ψ2 + γS2)(xk) = 0

or both. We have (Ψ j + γS j)(xi)≥ 0,xi ∈ Ω̄
2N , j = 1,2. Therefore either (Ψ1 + γS1)

or (Ψ1 + γS1) attains minimum at xi = xk. Suppose the theorem does not hold true,
then γ > 0.
Case (i): Assume that (Ψ1 + γS1)(xk) = 0, for xk = 0. Therefore (Ψ1 + γS1) attains
its minimum at xi = xk. Then,

0 = (Ψ1 + γS1)(x0) = Ψ1(x0)+ γS1(x0)> 0.

Case (ii): Assume that (Ψ1 + γS1)(xk) = 0, for xk ∈ Ω
2N ∪{x2N}. Therefore (Ψ1 +

+ γS1) attains its minimum at xi = xk. Then,

0 < LN
1 (Ψ̄+ γ S̄)(xi) = D−(Ψ1 + γS1)(xi)− (Ψ2 + γS2)(xi)≤ 0.

Refer [6] for the remaining part of the proof for the operator LN
2 (Ψ̄+ γ S̄)(xi) and

KN(Ψ̄+ γ S̄)(xi). �

Lemma 4 (Discrete Stability Result) Let Ū(xi) = (U1(xi),U2(xi)) be any mesh func-
tion. Then

|Uk(xi)| ≤ C max
{
|U1(x0)|, |U2(x0)|, |KU2(x2N)|, max

x j∈Ω̄2N
|LN

1 Ū(x j)|

max
x j∈Ω2N

1 ∪Ω2N
2

|LN
2 Ū(x j)|

}
, xi ∈ Ω̄

2N , k = 1,2. 2

PROOF By choosing suitable barrier functions and using Theorem 2, one can estab-
lish the above inequality. �
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Analogous to the continuous case, the discrete solution Ū(xi) can be decomposed as

Ū(xi) = V̄ (xi)+W̄ (xi),

where V (xi) and W (xi) are respectively the solutions of the problems:
LN

1 V̄ (xi) = D−V1(xi)−V2(xi) = 0, xi ∈Ω
2N \{0}, V1(x0) = v1(0),

LN
2 V̄ (xi) =−εδ

2V2(xi)+b(xi)V2(xi)+ c(xi)V1(xi)+d(xi)V ∗2 (xi) = f ∗(xi),

xi ∈Ω
2N \{0,N,2N},

V2(x0) = v2(0),V2(xN−1) = (v2)(1−),V2(xN+1) = (v2)(1+), KNV2(x2N) = Kv2(2)
(19)

and

LN
1 W̄ (xi) = D−W1(xi)−W2(xi) = 0, xi ∈Ω

2N \{0}, W1(x0) = w1(0),
LN

2 W̄ (xi) =−εδ
2W2(xi)+b(xi)W2(xi)+ c(xi)W1(xi)+d(xi)W ∗2 (xi) = 0,

xi ∈Ω
2N \{0,N,2N}

W2(x0) = w2(0), V2(xN+1)+W2(xN+1) =V2(xN−1)+W2(xN−1),

D−W2(xN)+D−V2(xN) = D+W2(xN)+D+V2(xN , KNW2(x2N) = Kw2(2).
(20)

We obtain error estimates separately for each component of the numerical solu-
tion.

Lemma 5 Let V̄ (xi) be a numerical solution of (5)− (6) defined by (19). Then

|(v j(xi)−Vj(xi))| ≤CN−1, xi ∈ Ω̄
2N , j = 1,2.

PROOF Now

LN
1 (v̄(xi)−V̄ (xi)) = LN

1 v̄(xi)−LN
1 V̄ (xi) =

(
D−− d

dx

)
v1(xi),

LN
2 (v̄(xi)−V̄ (xi)) =−ε

(
δ

2− d2

dx2

)
v2(xi)+d(xi)


0, i = 1,2, ...,N−1
v∗2− v2(xi−N), i = N +1,N +2,
...,2N−1

.

Therefore

LN
j (v̄(xi)−V̄ (xi))≤CN−1, xi ∈Ω

2N , j = 1,2.

Further

KN(v2−V2)(x2N) = KNv2(x2N)−KNV2(x2N) = KNv2(x2N)−Kv2(2)

|KN(v2−V2)(x2N)| ≤ Cε(h3
1v′′(χ1)+ · · ·+h3

Nv′′(χN))≤CN−2 ≤CN−1.
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where xi−1 ≤ χi ≤ xi, 1 ≤ i ≤ 2N. Then by the discrete stability result, we have
|(v j(xi)−Vj(xi))| ≤CN−1, xi ∈ Ω̄

2N , j = 1,2. �

Lemma 6 Let W̄ (xi) be a numerical solution of (7)− (8) defined in (20). Then

|(w j−Wj)(xi)| ≤CN−1(lnN)2, xi ∈ Ω̄
2N , j = 1,2.

PROOF Following the technique as in [13], we have |LN
1 (w j(xi)−Wj(xi))| ≤CN−1 lnN,

xi ∈ Ω̄
2N and |LN

2 (w j(xi)−Wj(xi))| ≤CN−1 lnN, xi ∈Ω
2N
1 ∪Ω

2N
2 .

By the Lemma 4, we have

|w j(xi)−Wj(xi)| ≤CN−1, xi ∈Ω
2N
1 ∪Ω

2N
2 .

At the point xi = x2N , firstly the estimate for W̄L − w̄L is given. The argument

depends on whether σ =
1
4

or σ = 2
√

ε

α
lnN <

1
4

Case (i): σ =
1
4

In this case the mesh is uniform and 2
√

ε

α
lnN ≥ 1

4
, it is clear that xi−xi−1 =N−1

and ε
− 1

2 ≤C lnN. From [13] it follows that

KN
j (W̄L− w̄L)(x2N) = KN

j W̄L(x2N)−KN
j w̄L(x2N)

= l j−KN
j w̄L(x2N)

= K jw̄L(x2N)−KN
j w̄L(x2N)

|KN
j (W̄L− w̄L)(x2N)| ≤ Cε((h3

1w̄′′L(χ1)+ · · ·+h3
2Nw̄′′L(χ2N))

≤ Cε
−1(h3

1 + · · ·+h3
2N)

≤ CN−1,

where xi−1 ≤ χi ≤ xi. Applying Lemma 4 to the function (W̄L− w̄L)(xi) gives

|(W̄L− w̄L)(xi)| ≤C(N−1 lnN).

Case (ii): σ <
1
4

The mesh is piecewise uniform, with the mesh spacing 2(1−2σ)/N in the subin-
terval [σ ,1− σ ] and [1 + σ ,2− σ ] and 4σ/N in each of the subintervals [0,σ ],
[1−σ ,1], [1,1+σ ] and [2−σ ,2]. From [13] it follows that

|KN
j (W̄L− w̄L)(xi)| ≤ C(N−1 lnN)

and

|KN
j (W̄L− w̄L)(xN)| ≤ ε|C(h3

1w′′(χ1)+ · · ·+h3
Nw′′(χ2N))|

≤ C(h3
1 + · · ·+h3

2N)≤CN−1,
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where xi−1 ≤ χi ≤ xi. Applying Lemma 4 to the function (W̄L− w̄L)(xi) gives

|(W̄L− w̄L)(xi)| ≤C(N−1 lnN).

Analogous arguments are used to establish the error estimate for W̄R. This completes
the proof. �

Theorem 3 Let Ū(xi) be the solution of (2)− (4) defined in (17)− (18). Then

|u j(xi)−U j(xi)|Ω̄2N ≤CN−1(lnN), where j = 1,2.

PROOF Combining Lemma 5 and Lemma 6, the proof gets completed. �

5. Numerical result

The ε-uniform convergence of the numerical method proposed in this paper is
illustrated through one example presented in this section.

Example 1 
−εu′′′(x)+5u′(x)−2u(x)−u′(x−1) = 1, x ∈Ω

∗

u(x) = 1, x ∈ [−1,0], u′(2) = ε

2∫
0

x
3

u(x)dx+2,

Example 2
−εu′′′(x)+(x2 +1)u′(x)− xu(x)−u′(x−1) = ex, x ∈Ω

∗

u(x) = 1, x ∈ [−1,0], u′(2) = ε

2∫
0

x
3

u(x)dx+5,

Table 1. Maximum pointwise errors and order of convergence for Example 1

Number of mesh points 2N
32 64 128 256 512 1024

DN
1 5.5241e-02 2.5460e-02 1.2190e-02 6.1527e-03 3.1160e-03 1.5641e-03

PN
1 1.1175e+00 1.0626e+00 9.8636e-01 9.8150e-01 9.9438e-01 -

DN
2 2.6336e-02 1.2465e-02 5.4961e-03 2.5944e-03 1.3281e-03 6.7400e-04

PN
2 1.0792e+00 1.1814e+00 1.0830e+00 9.6608e-01 9.7853e-01 -



Third order singularly perturbed delay differential equation of reaction diffusion type ... 109

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

0.5

1

1.5

2

2.5

3

3.5

4

4.5

U
i

U
1

U
2

Fig. 1. Numerical solution graph of Example 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

0

1

2

3

4

5

6

U

U
1

U
2

Fig. 2. Numerical solution graph of Example 2

Table 2. Maximum pointwise errors and order of convergence for Example 2

Number of mesh points 2N
32 64 128 256 512 1024

DN
1 9.5017e-02 4.2218e-02 2.0233e-02 1.0037e-02 4.9987e-03 2.4944e-03

PN
1 1.1703e+00 1.0612e+00 1.0114e+00 1.0057e+00 1.0028e+00 -

DN
2 3.4660e-02 1.5527e-02 7.0288e-03 2.7895e-03 1.3470e-03 6.3924e-04

PN
2 1.1585e+00 1.1435e+00 1.3332e+00 1.0503e+00 1.0753e+00 -

6. Conclusions

We have solved a class of third order singularly perturbed delay differential equa-
tions with an integral boundary condition using the finite difference method on
a piecewise uniform mesh. One example is presented which authenticates our pro-
posed numerical method. We have proved that the order of our numerical method is
O(N−1 lnN) (see Tables 1 and 2). Graph of numerical solution of Examples 1 and 2
is given in Figures 1 and 2.
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