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Abstract. This paper deals with multicomponent systems subjected to suddenly applied
loads. Such multicomponent systems consist of functionally identical elements, but the
elements differ in their ability to sustain the applied load. Specifically, arrays of pillars
are an example of the multicomponent systems. The capability of the array to sustain the
applied load depends not only on the strength of the pillars but also on how the load coming
from failed pillars is redistributed to the intact ones. We employ a Fiber Bundle Model with
load transfer restricted within a rectangular region generated dynamically after each pillar’s
destruction. We investigate strength of the array and its survivability.
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1. Introduction

Progressing miniaturization is the current tendency that poses a challenge to
understand the fracture size effects. Capturing how small-scale materials fail is
a complex problem that has been extensively studied, as recently reviewed in [1].
Micro- and nanoscale materials are characterized by such remarkable properties
as enhanced strength and toughness. However, these materials usually exhibit
sample-to-sample fluctuations, and resulting size-effects are non-trivial.

An example of small scale devices is micro- and nanopillars assembled into arrays
on the flat substrates [2]. Areas of applications of small-scale pillar arrays include e.g.
bio-mechanical sensing, photovoltaics or nanoscale electronics. Multiple experimen-
tal studies on tensilely and compressively loaded metallic nanopillars approve the
’smaller is stronger’ tenet i.e. a substantial strength increase is noticed with reduc-
tion of the sample size [3, 4]. The effect is observed in experiments performed on
individual small-scale pillars. The present paper focuses on multicomponent systems
composed of almost identical pillars that are subjected to axial sudden loading.
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We apply the statistical approach implemented by the Fiber Bundle Model (FBM)
concept [5,6]. In this scheme, the components whose strengths are smaller than loads
locally imposed on them are immediately destroyed and carry no load. The load
coming from failed components is transmitted to other intact elements according to
a given load transfer rule. It is of crucial importance how such redistribution happens.
Two extreme rules of load redistribution are global load sharing (GLS) and local load
sharing (LLS). In the latter, only the nearest neighborhood is affected by the load
originating from a failed component, and this rule is the most destructive one – the
effective range of load transfer is very short. In this case, the local load concentra-
tion around a damage is very high, and cascades of broken components propagate to
form an expanding cluster or clusters of failures. The GLS rule represents mean-field
approximation where all the intact components in the system are equally affected by
the load from a destroyed element irrespective of their distance from this element.
In this scenario the effective range of interaction is infinite. Hence, damaged com-
ponents may occur throughout the whole system. It is considered that the LLS rule
simulates the behavior of the actual realistic materials more accurately [7].

The above-mentioned extreme rules are idealized ones. Hence, other rules are
also proposed, e.g. power-law redistribution [8, 9] or transfer within the rectangular
region generated by nearest intact neighbors in each direction [10, 11]. The effective
range of load transfer can be tuned from global to (almost) local. In this work,
we analyze the behavior of loaded pillar arrays by varying the range of the region
including intact pillars. Specifically, we concentrate on maximum load supported by
the arrays as well as their survivability under load.

The rest of the paper is organized as follows. In section 2, the applied model is
described in detail. The simulation results are presented and discussed in section 3.
The paper ends with a brief Conclusion section.

2. Model description

The considered system consists of N = L × L vertical pillars located on a flat
substrate. The pillars are positioned in the nodes that form a square grid, therefore
L is the linear size of the system. Such pillar array is subjected to suddenly applied
[9, 12, 13] axial load which induces pillar crushes. However, the pillars are func-
tionally identical, but they differ in their quenched strength-thresholds σth. The dif-
ferences in the pillar-strength thresholds are caused by inherent material defects or
by fabrication errors. To take into account these pillar imperfections, we generate
random pillar-strength-thresholds according to two-parameter Weibull distribution
whose cumulative distribution function (cdf) is defined by

Pρ,λ (σth) = 1− exp
[
−(σth/λ )ρ

]
. (1)

The shape parameter ρ is responsible for the amount of disorder of thresholds.
The parameter λ scales a reference load. We assume here ρ = 2 and λ = 1.
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In the analyzed loading scenario, the applied load rises suddenly from zero to
a given value F . The initial increase of the load is uniform on all pillars in the sys-
tem, hence the load applied per a single pillar is equal to f = F/N. The application
of load F causes failure of the pillars whose σth < f . Then, the load from the just
destroyed pillars is redistributed to the pillars whose σth ≥ f . The initial cascade of
failures followed by load transfer may induce subsequent cascades of pillar failures
and resulting load redistributions. At the end of the process the array achieves one
of three stable states. The first possibility is the collapse of the array – all the pillars
are destroyed. When the applied load F is too small to destroy all the elements, the
array freezes in a stable configuration with only a fraction of destroyed elements. The
last scenario is the application of load that is too small to eliminate even the weakest
pillars in the system. It is noted that during the whole process the load F is conserved.

The load from a failed pillar is transferred uniformly to all intact pillars lying
inside a rectangular region generated in the following way. We search intact pillars in
four directions from the failed pillar until R surviving ones are detected in each direc-
tion. The rectangular region is bounded from each side by the most distant surviving
neighbor found in a given direction. An exemplary situation with R = 1 is depicted
in Figure 1. The range of interaction is restricted to the shaded rectangular region.
Intact pillars outside this region (and already destroyed elements) are not affected by
load from the destroyed element. This is in contrast to the above-mentioned power
law redistribution scheme where all the intact elements are affected, but the amount
of load varies inversely with the distance from the destroyed element. In the analyzed
model the effective range of load redistribution depends on which pillars are previ-
ously destroyed and which pillars are destroyed in the current time step (cascade).
By varying the range of interaction R, we can pass from short range interactions to
long range interactions.

Fig. 1. The load transfer region for R = 1. Black circle denotes just broken pillar, whereas gray circles
represent previously destroyed elements. The load redistribution from just destroyed pillar affects

the intact pillars (denoted by empty circles) belonging to the shaded region



Suddenly loaded arrays of pillars with variable range of load transfer 19

3. Simulation results

Based on the model described in the previous section, we have performed com-
puter simulations of the loading processes of the pillar arrays. In our research, we
applied Wolfram Mathematica software. During simulations, two quantities have
been varied to observe different failure behaviors. The first quantity is the system
size with 20×20 ≤ N ≤ 160×160. This system size range is appropriate to examine
the size effects in a reasonable computation time. The second varied quantity is the
range R with 1 ≤ R <

√
N.

Before the simulations of loading, we generated and stored at least M = 5000
uncorrelated sets {σth}

( j)
N , j ∈ {1, ...,M}. Each set was drawn from Eq. (1). Then,

taken one-by-one {σth}
( j)
N , we realized sudden compression experiments. However,

these sudden loadings are carried out in two distinct ways, which correspond to two
different purposes.

Our first goal is to obtain values of f j
max (N,R), j = 1, ...,M. We define fmax (N,R)

as the maximum value of the initially applied load f per pillar for which a particular
array is in the precritical state [7]. This means that under fmax (N,R), the system sup-
ports the applied load, but even a small increase δ of the initial load induces system
crossover to the postcritical state. In the precritical state the cascades of failures stop
without breaking the entire system whereas in the postcritical state, all pillars in the
system break.

Before simulation, we set a pair of values for fpost and fpre corresponding to the
postcritical and precritical states, respectively. The system is then loaded by the mean
f =

(
fpre + fpost

)
/2. If after the loading process the stable state is precritical the value

of fpre is increased to f otherwise fpost is reduced to f . The simulation ends when the
condition fpost− fpre ≤min(0.0001,1/N) is satisfied. We define the ultimate strength
of the system fmax as the last recorded value of fpre.

For a given system size and range R, simulation is repeated on M independent
configurations, and their strengths are averaged to obtain ⟨ fmax (N,R)⟩. Figure 2
illustrates chosen values of ⟨ fmax (N,R)⟩ in the function of R. In the regime of short
range of interactions, ⟨ fmax⟩ rapidly increases as R grows. Then, ⟨ fmax⟩ reaches a tem-
porary plateau, after which a small increase is observed and ⟨ fmax⟩ achieves values
corresponding to the GLS scheme.

In the case of the pure LLS scheme, a strong size effect of system strength is
observed and f LLS

max → 0 as N → ∞. Similar behavior is observed for small values of
R. However, this size effect weakens with increasing R (Fig. 3). The adequate formula
for fitting the LLS systems is given by

⟨ f LLS
max (N)⟩= β

(lnN)α (2)
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Fig. 2. Log-log plot of the mean strength of the system as a function of R.
The solid lines are drawn to guide the eye

where β = 0.631 and α = 0.350 (for ρ = 2). Considering model R, the formula (2) is
adequate only for R = 1. However, even for R = 1, the size effect is weaker than it is
for the pure LLS scheme. The effective range of interactions for R= 1 is substantially
greater than it is for its LLS counterpart. The ratio ⟨ fmax (N,1)⟩/⟨ f LLS

max (N)⟩ is an
increasing function of N, taking 1.118 for N = 20×20 and 1.177 for N = 160×160.
Hence, we propose the following formula with additional parameter

⟨ fmax (N,R)⟩= β

(lnN)α

(
1+ηN− 2

3

)
. (3)

This function can be used to approximate data up to R = 8. Exemplary fittings are
graphically depicted in Figure 3. For R/L ⪆ 0.5, the array behaves like the pure GLS
system with

0.995 <
⟨ fmax (N,R)⟩
⟨ f GLS

max (N)⟩
≤ 1. (4)

The given array is able to sustain its fmax, but under this suddenly applied load
a considerable number of pillars is destroyed in the system. We define U(N,R) as
a fraction of surviving pillars under fmax. Figure 4 graphically reports mean frac-
tions of surviving pillars for chosen system sizes. Contrary to behavior of strength,
the mean fraction ⟨U⟩ is a decreasing function of R. This means that in the systems
with short range interactions the degree of destruction is (relatively) low, but the re-
maining intact fraction is able to support a relatively small load. A slight increase in
the initially applied load ( fmax +δ ) triggers self-sustained catastrophic avalanche of
failures which also includes all the components that stay intact under fmax. Systems
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Fig. 3. The mean strength ⟨ fmax⟩ for arrays with L×L pillars.
The solid lines are drawn according to formula (3)

with long range interactions are characterized by a relatively small fraction of surviv-
ing components which supports significantly higher load. This difference in behavior
between short and long range regimes is caused by the degree of load transfer dis-
persion. In the short range regime the load is concentrated near broken components
and, if the critical load ( fmax + δ ) is applied, the destruction propagates through the
system in the form of an expanding cluster (or clusters) of crushed pillars. In the case
of long range interactions, significant load inhomogeneities are not present. All the
intact pillars support similar load and thus the array sustains much higher load despite
of the smaller fraction of surviving pillars.
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Fig. 4. Mean fraction of surviving pillars for systems loaded by their appropriate ultimate strengths
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Ultimate strength of the system and fraction of broken pillars under fmax are ran-
dom variables. We employ Pearson correlation coefficient r to measure the strength
of relationship between fmax and U . As R grows, a gradual transition from highly
negatively correlated data (R = 1) to almost uncorrelated data is observed (Fig. 5).
The regime of long range interactions is characterized by negligibly small correla-
tion. However, the behavior of r as a function of R is size dependent. Assuming short
range interactions the bigger, the system the more correlated data are.
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Fig. 5. Pearson correlation coefficient between fmax and U as a function of range R
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Fig. 6. Standard deviation (s, left panel) and skewness (g1, right panel) of fmax distribution vs R

The above analyzed sample mean ⟨ fmax⟩ is an estimator of the mean of the pop-
ulation which is the first raw moment. We explore estimators of two other measures
characterizing the distribution of fmax, namely standard deviation s (measure of dis-
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persion of a distribution) and skewness g1 (measure of the degree of asymmetry).
These two measures are calculated from central moments. The results are shown
in Figure 6. From the left panel it is seen that the dispersion of fmax decreases as
the range of interactions grows. From a certain value of R, dependent of system size,
the standard deviation becomes almost constant. In this range of R the arrays present
the GLS-like behavior.

Regarding the skewness (right panel of Fig. 6), the distribution of fmax changes
from moderately skewed to non-skewed as the entire range of R is passed. Some fluc-
tuations, visible in the right panel of Figure 6, are caused by too small a sample size
M as the skewness is computed from the third central moment. However, the trend is
clear. The skewness vanishes (|g1|< 0.1) at approximately R/L ∈ (0.12,0.16).

As the distribution of fmax varies from moderately skewed to symmetrical, we
employ three-parameter skew normal distribution (SND) for fitting fmax distribution.
The SND is a generalization of the Gaussian distribution that allows non-zero
skewness. The cumulative distribution function (cdf) of SND follows

P( fmax) =
1
2

erfc
(
− fmax −ξ√

2ω

)
−2T

(
fmax −ξ

ω
,ζ

)
(5)

where T(·, ·) is Owen’s T function and ξ , ω , ζ represent location, scale and shape
parameters, respectively. The last parameter governs the skewness. The empirical
parameters have been determined by the maximum likelihood method. Exemplary
empirical probability density (pdf) functions are presented in Figure 7. Goodness-of-
-fit has been tested using Cramér-von Mises and Anderson-Darling methods.
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Fig. 7. Empirical probability density functions for different values of R and N = 160×160. Solid lines
are drawn according to Eq. (5) with parameters approximated to fit the empirical data
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As the skewness decreases and finally vanishes with increasing R, we have con-
ducted Shapiro-Wilk tests for normality testing of fmax distribution. This allowed us
to evaluate the minimum values of R from which the data follow normal distribution
(characteristic for the GLS regime). These minimum values are shown in Figure 8.
A clear size effect is visible. For values of R smaller than reported in Figure 8,
the Shapiro-Wilk tests return p-value < 0.05 showing evidence that in this range of R
the data are not normally distributed. Hence, the data is skewed, which is typical
for the LLS rule and short range interactions. Therefore, values of R presented in
Figure 8 may indicate transition points between two regimes, namely short and long
range interactions.
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Fig. 8. The minimum values of R for which Shapiro-Wilk tests have p-value > 0.05.
Normality of fmax distribution is tested

The second goal of the paper is analysis of array survivability. Survival of the array
means that, after the loading procedure, the array sustains the applied load, meaning
that the precritical stable state is reached. Let survival function S( f ) be a measure
of survivability. We define the survival function S( f ) as the probability that a given
array is in the precritical state when the load f (or less) is applied to the system.
The survival function can be viewed as the fraction of arrays having survived until
load f .

For a fixed system size, we have chosen a suitable range of f to ensure covering
the range from S( f ) ≈ 1 to S( f ) ≈ 0 for each analyzed R. Then, taking each set
{σth}, we have performed loading processes for increasing values of f at a step of
∆ f = 0.001.

The survival curves are fitted by the complementary cdfs of skew normal distribu-
tion

S ( f ) = 1− 1
2

erfc
(
− f −ξSF√

2ωSF

)
+2T

(
f −ξSF

ωSF
,ζSF

)
(6)
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Fig. 9. Empirical survival functions for different values of R. The cases of LLS
and GLS rule are also included. System size N = 160×160. Solid lines

follow Eq. (6) with parameters computed from the simulations

where ξSF , ωSF , ζSF are parameters that correspond to location, scale and shape,
respectively. Exemplary fittings, together with data points obtained from simulations,
are drawn in Figure 9. Results concerning the LLS and the GLS schemes are also
attached. A considerable shift to the right of the survival curve is observed when the
range of interactions changes from pure LLS to R = 1. As R increases, the transition
region from S( f )≈ 1 to S( f )≈ 0 decreases. Values of fitted parameters ξSF , ωSF , ζSF

are presented in Figure 10. The previously mentioned system size effect is also seen
in the results concerning survival curves. Values of all parameters are arranged in
a descending order of the system size. The behavior of ξSF , ωSF and ζSF parameters
is similar to the one observed for ⟨ fmax⟩, s and g1, respectively. Furthermore, values
of the expectation

µ =
∫

∞

0
S( f )d f . (7)

are perfectly consistent with values of ⟨ fmax⟩, however, these two measures are
obtained from two different processes.

4. Conclusions

We have numerically simulated axial sudden loadings of pillar arrays. The strength-
-thresholds of the pillars were quenched random variables distributed according to
Weibull distribution.

After the destruction of the pillar, its load has to be transferred to other intact
pillars. Hence, load transfer rule plays a key role in the loading process. We have
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Fig. 10. The approximated parameters ξSF (a), ωSF (b) and ζSF (c) vs. R for chosen system sizes

employed uniform load transfer within rectangular array of range R. The parameter
R allows us to tune the effective range of interactions from short (LLS-like) to long
range (GLS-like).

Obtained values of maximum load fmax turned out to be a function of system
size N and range of interaction R. Based on the simulation results, we have shown
that the empirical distribution of fmax follows skew normal distribution. However,
the skewness vanishes as the system crosses from short to long range interactions.

For the fixed value of R, we have found the formula for the mean system strength
in the function of the system size. The formula is adequate up to R = 8. Considering
array survivability, we have fitted survival curves by complementary cumulative of
skew normal distribution. Values of fitted parameters are arranged according to the
system size.
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