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Abstract. In the present paper, we apply the Galerkin method using Chebyshev wavelets
to approximate the exact solution for a second order Fredholm integro-differential equation
with initial conditions. This numerical method gives us a nonlinear algebraic system that
would be solved using the Picard successive approximations technique. Furthermore, we
show the validity and the ability of the proposed method through some illustrative examples.
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1. Introduction

Recently, there has been a growing interest in the Integro-Differential Equations
(IDEs), for these kinds of equations can be found in modeling real phenomena in
many fields of sciences, physics, chemistry, biology and engineering problems, such
as epidemic models [1, 2], the Boltzmann kinetic equation [3], and the Vlasov and
Landau equations [4]. However, the exact solution to such equations is usually dif-
ficult to obtain, so the researchers use different numerical methods to approach the
exact solution such as the Pade approximation, the Legendre-Galerkin method [5],
the Hermite wavelet [6], the Haar wavelet [7], the Chebyshev wavelet collocation
method [8, 9], the wavelet-Galerkin method [10], the Laguerre wavelets collocation
method [11], the Laplace decomposition method [12], Bernoulli polynomials [13],
and the B-spline method [14, 15].
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In this article, we consider the following Fredholm integro-differential equation
with initial conditions:φ(x) = f (x)+

∫ 1

0
K(x,y,φ(y),φ ′(y),φ ′′(y))dy,

φ(0) = ρ1, φ
′(0) = ρ2,

(1)

where φ(x), f (x) ∈ H2([0,1]), K,∂xK,∂ 2
x K ∈C([0,1]2 ×R3), and ρ1, ρ2 ∈ R.

We mention that this type of equation has a specific form, whereas the unknown
function and its derivatives appear inside of the nonlinear kernel, so the main result
of this paper is to introduce a numerical method to approach the exact solution of the
equation (1) by applying the Galerkin method with Chebyshev-Wavelets.

This paper is structured as follows: In section 2, we introduce some Chebyshev
wavelet properties and function approximation. In section 3, we build the integration
operational matrices. In section 4, we explain our numerical method, and in section
5, we prove the convergence analysis of the proposed method. Finally, in section
6, we demonstrate the accuracy and efficiency of our method with some illustrative
examples.

2. Properties of Chebyshev wavelets

2.1. Chebyshev polynomials

The Chebyshev polynomials are obtained by expanding the formula:

Tn(x) = cos(narccos(x)),

and satisfy the following recurrence relation:{
Tn+1(x) = 2xTn(x)−Tn−1(x),
T1(x) = x, T0(x) = 1, for n ⩾ 1.

These polynomials are orthogonal with respect to the weight function w(x)=
1√

1− x2

on [−1,1], and

∫ 1

−1
w(x)Tn(x)Tm(x)dx =


π, n = m = 0,
π/2, n = m ̸= 0,
0, n ̸= m.
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The first few Chebyshev polynomials are:

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 −1,

T3(x) = 4x3 −3x,

T4(x) = 8x4 −8x2 +1,

T5(x) = 16x5 −20x3 +5x.

2.2. Chebyshev wavelets

The wavelets are stretched versions of the original wavelet T with the same basic
shape but at a different scale and frequency. We construct them from the transla-
tion parameter b and the scaling parameter a, then we have the following family of
wavelets:

θa,b(x) =
1√
|a|

T
(

x−b
a

)
, a,b ∈ R, a ̸= 0.

So, the Chebyshev wavelets are defined as:

θi, j(x) =

2
k
2 T̃j(2kx−2i+1),

i−1
2k−1 ⩽ x ⩽

i
2k−1 ,

0, otherwise,

and

T̃j(t) =


1√
π
, j = 0,√

2
π

Tj(t), j > 0,

where k is a positive integer number, j = 0,1,2, . . . ,n−1, i = 1,2, . . . ,2k−1 and Tj is
the Chebyshev polynomial of degree j. However, the family of Chebyshev wavelets
{θi, j} defines an orthonormal basis for L2

wk
([0,1]) such that:

wk(x) =



w1,k(x), 0 ≤ x <
1

2k−1 ,

w2,k(x),
1

2k−1 ≤ x <
2

2k−1 ,

...
...

w2k−1,k(x),
2k−1 −1

2k−1 ≤ x < 1,
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where wi,k(x) = w
(

2kx−2i+1
)

. The Chebyshev wavelets charts are proven for
k = 1 and n = 1,2,3,4 in Figure 1.

Fig. 1. Chebyshev wavelets for k = 1

For any function φ(x) in L2
wk
([0,1]) can be expanded as:

φ(x) =
∞

∑
i=1

∞

∑
j=0

ci, jθi, j(x), (2)

where ci, j = ⟨φ ,θi, j⟩, such that ⟨., .⟩ is the inner product in L2
wk
([0,1]). So we approx-

imate the function φ(x) by truncating the infinite series (2):

φn(x) =
2k−1

∑
i=1

n−1

∑
j=0

ci, jθi, j(x) =CT P(x), (3)

where, CT and P(x) are 2k−1n×1 matrices:

CT = [c1,0,c1,1, ...,c1,n−1,c1,0,c2,1, ...,c2,n−1, ...,c2k−1,0, ...,c2k−1,n−1],

and

P(x) = [θ1,0,θ1,1, ...,θ1,n−1,θ2,0,θ2,1, ...,θ2,n−1, ...,θ2k−1,0,θ2k−1,1...,θ2k−1,n−1]
T .
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3. Chebyshev wavelet operational matrix of integration

If we take k = 2, then the matrices CT and P(x) would be:

CT = [c1,0,c1,1, ...,c1,n−1,c2,0,c2,1, ...,c2,n−1].

P(x) = [θ1,0(x),θ1,1(x), ...,θ1,n−1(x),θ2,0(x),θ2,1(x), ...,θ2,n−1(x)].

Let Wn be a matrix that contains the coefficients of Chebyshev wavelets:

Wn =

(
Fn On

On F̃n

)
,

Fn =
2√
π


1 −

√
2 · · · (−1)n−1

√
2

0 4
√

2 · · ·
...

...
...

. . .
0 0 · · · 4n−1

√
2

 , F̃n =
2√
π


1 −3

√
2 · · · Tn−1(−3)

√
2

0 4
√

2 · · ·
...

...
...

. . .
0 0 · · · 4n−1

√
2

 ,

and

Xn(x) = (1,x,x2, ...,xn−1,1,x,x2, ...,xn−1),

Pn(x) = [θ1,0,θ1,1, ...,θ1,n−1,θ2,0,θ2,1, ...,θ2,n−1].

So, we can write:

Pn(x) = Xn(x)Wn.

Let Nn be an integral matrix in classical basis for polynomial space:

Nn =

(
Gn On

On G̃n

)
,

Gn =



0 1 0 0 · · · 0

0 0
1
2

0 · · · 0

0 0 0
1
3

· · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 1
n


, G̃n =



−1
2

1 0 0 · · · 0

− 1
22 0

1
2

0 · · · 0

0 0 0
1
3

· · · 0
...

...
...

...
. . .

...

− 1
2n 0 0 0 · · · 1

n


,
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then, we have the first integration matrix:∫ x

0
CT Pn(y)dy =CT MnPn+1(x) =CT Q1(x),

and the double integration matrix:∫ x

0

∫ z

0
CT Pn(y)dydz =CT MnMn+1Pn+2(x) =CT Q2(x),

where,

Mn =W−1
n NnWn+1.

4. Description of method

Let the following Fredholm integro-differential equation:φ(x) = f (x)+
∫ 1

0
K(x,y,φ(y),φ ′(y),φ ′′(y))dy,

φ(0) = ρ1, φ
′(0) = ρ2.

(4)

First, we derive the equation (4) twice to obtain the following equation:

φ
′′(x) = f ′′(x)+

∫ 1

0
∂

2
x K(x,y,φ(y),φ ′(y),φ ′′(y))dy, (5)

we approach the function φ
′′(x) using Chebyshev wavelets as:

φ
′′
n (x) =CT Pn(x), (6)

integrate the equation (6) from 0 to x, we obtain:

φ
′
n(x) = ρ2 +CT Q1(x), (7)

integrate again (7) from 0 to x, then we get:

φn(x) = ρ1 +ρ2x+CT Q2(x), (8)

by substituting (6), (7) and (8) in (5), we obtain:

CT Pn(x) = f ′′(x)+
∫ 1

0
∂

2
x K(x,y,ρ1 +ρ2y+CT Q2(y),ρ2 +CT Q1(y),CT Pn(y))dy.

(9)
Multiplying equation (9) by θi, j(x)wi,2(x) for i = 1,2 and j = 0,1, · · · ,n− 1, after
that we integrate with respect to x from 0 to 1, then we get the following nonlinear



34 Y. Henka, S. Lemita, M.Z. Aissaoui

algebraic system:

ci, j = yi, j +
∫ 1

0

∫ 1

0
θi, j(x)wi,2(x)∂ 2

x K
(
x,y,ρ1 +ρ2y+CT Q2(y),ρ2 +CT Q1(y),CT Pn(y)

)
dydx,

(10)

where yi, j = ⟨ f ′′,θi, j⟩. However, we can find the vector CT solution of the above
system (10) by using the Picard successive approximations method, then we substi-
tute them in (8) to get the numerical solution of the proposed equation (1).

5. The convergence analysis

First, to prove the convergence analysis of the proposed numerical process
described above, consider the Sobolev space H = H2([0,1],R) equipped with the
following norm:

∀φ ∈ H , ∥φ∥H = ∥φ∥L2[0,1]+∥φ
′∥L2[0,1]+∥φ

′′∥L2[0,1]

Furthermore, let’s suppose the following assumptions:

(A )



∃Am,Bm,Cm > 0,where m = 0,1,2.∀x,y ∈ [0,1], ∀u, ū,v, v̄,w, w̄ ∈ R,
|K(x,y,u,v,w)−K(x,y, ū, v̄, w̄)|⩽ A0|u− ū|+B0|v− v̄|+C0|w− w̄|,
|∂xK(x,y,u,v,w)−∂xK(x,y, ū, v̄, w̄)|⩽ A1|u− ū|+B1|v− v̄|+C1|w− w̄|,
|∂ 2

x K(x,y,u,v,w)−∂
2
x K(x,y, ū, v̄, w̄)|⩽ A2|u− ū|+B2|v− v̄|+C2|w− w̄|,

0 < γ = max

{
2

∑
m=0

Am,
2

∑
m=0

Bm,
2

∑
m=0

Cm

}
< 1.

Theorem 1 According to assumptions (A ), the approximate solution φn converges
to the exact solution φ in the space H . 2

PROOF Consider the following operator T defined from H to itself by:

∀x ∈ [0,1], T : H −→ H

φ 7−→ T (φ)(x) = f (x)+
∫ 1

0
K
(
x,y,φ(y),φ ′(y),φ ′′(y)

)
dy.

So, the exact solution φ of our equation (1) and its derivatives φ
′ and φ

′′ can be
represented by the following system:

φ(x) = T (φ)(x),
φ
′(x) = T ′(φ)(x),

φ
′′(x) = T ′′(φ)(x).

By applying the Galerkin projection method using Chebyshev wavelets given by (3),
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the previous system will be approached by:
φn(x) = Tn(φn)(x),
φ
′
n(x) = T ′

n(φn)(x),
φ
′′
n (x) = T ′′

n (φn)(x).

It’s clear that by applying the triangle inequality, we get:

|φn(x)−φ(x)|= |Tn(φn)−T (φ)|= |Tn(φn)−T (φn)+T (φn)−T (φ)|,
⩽ |Tn(φn)−T (φn)|+ |T (φn)−T (φ)|.

According to assumptions (A ) and Cauchy Schwarz inequality, we achieve:

|T (φn)−T (φ)| =

∣∣∣∣∫ 1

0
(K(x,y,φn(y),φ ′

n(y),φ
′′
n (y))−K(x,y,φ(y),φ ′(y),φ ′′(y)))dy

∣∣∣∣ ,
⩽ A0

∫ 1

0
|φn(y)−φ(y)|dy+B0

∫ 1

0
|φ ′

n(y)−φ
′(y)|dy+C0

∫ 1

0
|φ ′′

n (y)−φ
′′(y)|dy,

⩽ A0∥φn −φ∥L2[0,1]+B0∥φ
′
n −φ

′∥L2[0,1]+C0∥φ
′′
n −φ

′′∥L2[0,1]. (11)

On the other hand, the study [16] assumes that sequence Sn = Tn(φn) is convergent,
and gives us the following error convergence order:

|Tn(φn)−T (φn)|⩽ O(nµ0)→ 0. (12)

So, from inequalities (11) and (12), we obtain:

∥φn−φ∥L2[0,1] ⩽ A0∥φn−φ∥L2[0,1]+B0∥φ
′
n−φ

′∥L2[0,1]+C0∥φ
′′
n −φ

′′∥L2[0,1]+O(nµ0).

Similarly, we find:

∥φ
′
n −φ

′∥L2[0,1] ⩽ A1∥φn −φ∥L2[0,1]+B1∥φ
′
n −φ

′∥L2[0,1]+C1∥φ
′′
n −φ

′′∥L2[0,1]+O(nµ1),

∥φ
′′
n −φ

′′∥L2[0,1] ⩽ A2∥φn −φ∥L2[0,1]+B2∥φ
′
n −φ

′∥L2[0,1]+C2∥φ
′′
n −φ

′′∥L2[0,1]+O(nµ2).

Therefore, if we put O(nµ) = O(nµ0) +O(nµ1) +O(nµ2) → 0, and according to
0 < γ < 1, we can conclude that:

∥φn −φ∥H ⩽
O(nµ)

1− γ
→ 0.

Which confirms the convergence of the approximate solution φn to φ in the
space H . ■

6. Examples

In this section, we apply our numerical method on two illustrative examples, in
order to verify its accuracy and validity. For this reason, we define the error function
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En by:

En = ∥φn −φ∥H ,

where φ is the exact solution of the example, and φn is the numerical solution obtained
using Matlab computation software.

6.1. Example 1

Consider the following equation:φ(x) = f (x)+
∫ 1

0
K(x,y,φ(y),φ ′(y),φ ′′(y))dy, ∀x ∈ [0,1],

φ(0) = 0, φ
′(0) = 0,

with

f (x) = xsin(x)+
1
2

sin(x)(2ln(2)−1),

K(x,y,u,v,w) =−1
2

sin(x)ln[1+ sin(y)u+ cos(y)v− 1
2

sin(y)(w− sin(y))],

and the exact solution is φ(x) = xsin(x).

6.2. Example 2

Let the Fredholm integro-differential equation:
φ(x) = f (x)−

∫ 1

0

3
4

cos(x)sin
[

1
2

e−y(2φ
′′(y)−φ

′(y)−φ(y))
]

ds, ∀x ∈ [0,1],

φ(0) =
1
4
, φ

′(0) =−3
4
,

with

f (x) =


1
4

[
(2x−1)2ex + cos(x)[cos(

1
2
)−2cos(2)+ cos(

7
2
)]

]
, 0 ⩽ x ⩽

1
2
,

1
4

[
−(2x−1)2ex + cos(x)[cos(

1
2
)−2cos(2)+ cos(

7
2
)]

]
,

1
2
⩽ x ⩽ 1,

and the exact solution is:

φ(x) =


1
4
(2x−1)2ex, 0 ⩽ x ⩽

1
2
,

−1
4
(2x−1)2ex,

1
2
⩽ x ⩽ 1.
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Fig. 2. Graphical comparison of φ vs φn
for Example 1, with n = 7

Fig. 3. Graphical comparison of φ
′ vs φ

′
n

for Example 1, with n = 7

Fig. 4. Graphical comparison of φ
′′ vs φ

′′
n

for Example 1, with n = 7

Table 1. Numerical results of Example 1

n En CPU time
3 6.9888e-05 0.109
4 1.4336e-06 0.123
5 4.9340e-08 0.154
6 6.7237e-10 0.194
7 5.4441e-10 0.310

Table 2. Numerical results of Example 2

n En CPU time
3 7.9499e-04 0.081
4 2.7590e-05 0.108
5 7.6178e-07 0.129
6 1.7419e-08 0.169
7 8.5031e-09 0.372
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Fig. 5. Graphical comparison of φ vs φn
for Example 2, with n = 7

Fig. 6. Graphical comparison of φ
′ vs φ

′
n

for Example 2, with n = 7

Fig. 7. Graphical comparison of φ
′′ vs φ

′′
n

for Example 2, with n = 7

Discussion: We observe from the tables that the error function is almost null,
especially for big values of the number n. Therefore, our proposed method is more
effective whenever the degree of the polynomial (approximate solution) n is greater.

7. Conclusion

In this paper, the Galerkin method has been applied using the Chebyshev wavelets
to approach the exact solution for a nonlinear Fredholm integro-differential equation
of the second order with the initial conditions. The present method allowed us to
reduce the equation into a nonlinear algebraic system, then we solve this system using
the MATLAB tool. The numerical examples have proved the accuracy and validity
of the proposed method.
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