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Abstract. This article presents an innovative proposal for estimating the distance between
an autonomous vehicle and an object in front of it. Such information can be used, for
example, to support the process of controlling an autonomous vehicle. The primary source of
information in research is monochrome stereo images. The images were made in compliance
with the laws of the canonical order. The developed convolutional neural network model
was used for the estimation. A proprietary dataset was developed for the experiments.
The analysis was based on the phenomenon of disparity in stereo images. As a result of the
research, a correctly trained model of the CNN network was obtained in six variants. High
accuracy of distance estimation was achieved. This publication describes an original proposal
for a hybrid blend of digital image analysis, stereo-vision, and deep learning for engineering
applications.
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1. Introduction

In recent years, we have seen rapid development in the field of autonomous ve-
hicles. Scientists are conducting intensive research on vehicle autonomy in various
environments: water [1,2], ground [3–6], and air [7–10]. The vast majority of vehicle
autonomy is based on meters and sensors. In systems, such as displacement or brak-
ing autonomy, the key information is the distance to objects. In practice, radars [11],
lidars [6, 12, 13], or GPS [14] are mainly used to obtain this information. Each of
the listed ones has some (its) limitations [15]. Radars and lidars are very sensitive
to the properties of the shells of objects (obstacles). Luminance changes, including
flash flares, are a significant problem. GPS systems require the object (obstacle) to
be equipped with a transmitter. In addition, they do not work (they lose the signal) in
closed rooms and places such as caves and tunnels. Devices consisting of an image
recorder and another distance meter, such as a rangefinder (Kinect-V2 [16]) or optical
sensors [17], are also used. Their unquestionable advantage is the speed of operation,
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and the limitation is the lack of versatility (they are dedicated to strictly defined pur-
poses). Combining various individual devices into sets is also practiced [18, 19]. In
such a case, it is necessary to develop implementations integrating the obtained data
from various sources. An unquestionable advantage is the possibility of extensive use
of the information obtained.

A good solution seems to be using images from two cameras as a source of infor-
mation. With their help, stereo pairs of images can be obtained. Each of the images
individually can be used as a source of information for various functionalities. For
example, semantic segmentation of the recorded scene, classification of objects, and
a stereo system for distance detection [20]. The use of stereo-vision requires a good
knowledge of the geometry of the assembled camera set and the optical parameters of
each of the devices used [21]. Mounting such a set of cameras in a canonical layout
simplifies the calculation method. In the classical analysis of stereo images, the infor-
mation about the depth in the scene is obtained based on the disparity phenomenon.
The difference in the position of objects on the surface of the left and right image
allows the distance to a given object to be calculated. For this purpose, a dense dis-
parity map is computed for each stereo image pair. The accuracy of such calculations
strictly depends on the spatial resolution of the images. Therefore, the greater the
distance from the object, the less accurate the results. Moreover, the computational
complexity for each pair of frames of recorded video streams makes it challenging to
apply stereo-vision in real-time.

Excellent results in image analysis are obtained using artificial intelligence (AI),
in particular, convolutional neural networks (CNN) [22, 23]. Modern deep learning
networks [24, 25] are used with great success to classify objects (images) and to
predict specific values based on an image. It is only necessary to prepare a sufficiently
large and representative data set for a given issue. In article [20], the authors obtained
good results using R-CNN. They proposed a method to obtain information about the
position of objects in the scene based on stereo images. Their solution is based on
finding the object and classifying it. Then research is carried out only based on a 3D
box estimator and a dense region-based photometric alignment method.

This article presents a hybrid solution, which is a way to estimate the distance
of an autonomous vehicle from an obstacle (object). The only source of informa-
tion is stereo pairs of dynamic grayscale images. The CNN deep learning network
regression model was used as the solution method. It is a proposal that can be suc-
cessfully applied to engineering solutions as a preliminary operation to provide data
for the vehicle’s steering. The article consists of 5 sections: 1. Introduction – presents
an overview of currently conducted related research and an introduction to the
research topic; 2. Materials and methods – what was used in the study was pre-
sented: 2.1. Dataset – how the set of images was developed, and 2.2. Deep Learning
Network – the architecture of the prepared CNN network was discussed; 3. Research
– the assumptions and the course of the conducted research are presented; 4. Re-
sults and discussion – shows the study’s results and analysis; 5. Conclusions – Short
conclusions from the research work were presented.
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2. Materials and methods

The research was conducted taking into account their potential use in the auton-
omy of vehicle movement. Therefore, assumptions were made that the autonomous
vehicle would be a moving ground vehicle and objects on its path would be poten-
tial obstacles. These are everyday objects such as cardboard boxes (cuboids of various
proportions) and packaging (irregular shapes), all in the size range of 0.09 m to 0.6 m.
Images recorded from two cameras located at a certain distance from the recorded
scene and located at a small distance from each other will allow for obtaining two
images of the same scene but with some differences [26]. As previously assumed, dis-
tance estimates were made based on the disparity phenomenon. The research method
was based on the use of CNN, which, as we know, needs large data sets. Additionally,
for learning the CNN model and verifying its operation, a correct answer is needed
for the tested sample. Thus, in addition to the set of samples (stereo images), measur-
ing the actual answer (distance from the vehicle to the obstacle) is necessary. Based
on these assumptions, an original dataset was developed.

2.1. Dataset

A prototype test stand has been prepared, shown in Figure 1. As a symbolic
autonomous vehicle, a traveling platform made of OSB with dimensions of 0.62
× 0.68 m and four wheels were used. On its surface, two identical LAMAX X9.1
cameras with α = 170◦ angles were placed in the front. One method of recording
video streams was adopted for the research: 30 fps in Full HD quality with a size
of 1920 × 1080 pixels, and H.264 recording compression. The depth measurement
was performed with the Benewake model CE30-D lidar using the ToF measurement
method. According to the technical data, the device works from 0.4 m to 28.0 m.
The laser beam scans the area in the range of 60◦ horizontally and 4◦ vertically.
The result of the measurements is a point cloud with a resolution of 320 × 20 pixels
and recorded with a frequency of 30 fps. A DELL laptop, model Inspirion 5567, was
used to save the downloaded data. From the components mentioned above, a stand
was built that met the conditions of the canonical system. The cameras and lidar have
been arranged in the front place: their lenses and the shoreline of the platform form
one plane. The distance between the cameras (the base of the canonical layout) is
0.49 m, and the lidar is halfway there.

Video streams and lidar readings were recorded on the prepared test stand. In the
central part of the scene, an object was placed. Toward the object, the vehicle was
moved at an average speed not exceeding 0.05 m/s. Surveys were usually done for
distances from 9 m to 1 m with measurement accuracy up to 0.01 m. The use of three
devices required their calibration and synchronization. Thanks to their canonical
arrangement, it was possible to skip the process of rectifying images (frames). Lidar
provides clouds of points found at a given moment and their location in the analyzed
space. On its basis, the distance to the object (obstacle) was determined based on the
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minimum number of points located with a sufficiently small distance between them.
It was assumed that the most important aspect for each object is the distance to its
front surface, the point closest to the autonomous vehicle. The first tests showed that
there were delays in the lidar’s work. Therefore, it was necessary to synchronize these
devices by introducing an additional tag.

Fig. 1. Prototype test stand for recording video streams

After decomposing both video streams into frames and synchronizing them, the
three data are dataset: two RGB images and the numerical value corresponding to
the distance to the object on a given pair of images. It was assumed that detecting
objects in the image was a preliminary operation for the conducted research. It was
carried out by making a semantic segmentation of the image based on the levels of the
color of the objects. Then operations such as erosion, noise removal, and dilatation
were applied. Eventually, for each image pixel, all background except the subject
was replaced with black. This was to rule out the background structure’s influence
on the model’s learning. In addition, the images have been converted to grayscale,
significantly reducing computational complexity. This set (two grayscale images and
one value) is one data sample. The developed proprietary dataset includes 5,890 such
original samples; they are intended for the process of training, validation, and testing
of the CNN model.

It is well known that in deep learning, large data sets are required to train a net-
work model properly; therefore, it was decided to enlarge the prepared set. Thus,
three separate datasets have been developed. The first set named Db1 with 5,890 orig-
inal stereo pairs of grayscale images. The second set, named Db2, contains 11,780
stereo pairs of grayscale images, consisting of the Db1 set and its copies rotated 180◦.
The third set, named Db3, of 23,560 stereo pairs of grayscale images, consisting of
set Db2, and images of Db1 with the first 200 image rows removed and their copies
rotated by 180◦. With these three data sets available, it will be possible to perform
comparative tests and analyze the obtained results.

2.2. Deep Learning Network

A CNN model was developed for research purposes. It is the task to predict
one value (distance to an object) based on a stereo pair of digital gray images (left
frame/image and right frame/image) containing this object. The original images are



64 J. Kulawik

1920 × 1080 pixels. They are scaled to the size required by the model when loading
into the model.
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Fig. 2. Convolutional Neural Network architecture

A simple regression CNN model consisting of 19 layers was used, as shown in
Figure 2. The input image layer is the matrix 227 × 227 × 2, where the first com-
ponent of the range 227 × 227 is the left image and the second component is the
right image. The second is a convolution layer with 96 filters of size 11 × 11, with
their offset stride of [3 3] (stride every 3 places horizontally and every 3 places verti-
cally) and [0 0 0 0] padding (no top, bottom left and right padding), after which has
a relu (Rectified Linear Units) layer. The fourth and fifth layers are again a pair of
convolution and relu layers, but this time 128 filters of the size 5 × 5 are used, and
[2 2] stride. Then cross-channel normalization with five channels per element was
applied. After which, max pooling was performed in the 3 × 3 range with a shift by
[1 1] stride. Then a series of four pairs of layers of convolution and relu were used.
Each one uses 3 × 3 size filters. The first two pairs had 256 and 384 filters, a [1 1]
shift stride and [0 0 0 0] padding. Two consecutive pairs had 512 filters each, a [2 2]
shift stride, and [1 1 1 1] padding was applied. In the following part, a series of fully
connected layers were used in the scheme. First, fully connected with size 512, next
a relu layer, and next a fully connected layer. The regression output layer was used as
the last one. As a result, the network model returns one numerical value, the distance
from the object measured in meters.

3. Research

The research aimed to teach the developed CNN model to estimate the distance
from an object/obstacle. The input data are the sample sets presented earlier. It was
assumed that the trained model could be used for distance estimation based only on
two images without using other measuring devices such as lidar, rangefinder, etc. The
research was carried out in the Matlab environment. Training, validation, and testing
of the developed network model were performed on a computing station with the
following parameters: Windows 10 Pro, AMD Ryzen 9 3950X 16-Core @3.5 GHz
processor, 32 GB RAM installed, NVIDIA GeForce RTX 3080 graphics card.
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The research work is divided into three independent parts (Part1, Part2, Part3),
one for each of the prepared datasets. In each case, the entire set was randomly
divided into three data types: 20% of the samples were separated as a test set, and the
rest of the data was divided into validation and training sets. Due to the small dataset,
eight times cross-validation was used in the studies. The process was repeated eight
times. In each of them, one part was successively a validation set, and the remaining
seven were a training set. The given test set was used only to test the correctness of
the learned CNN model, so it did not take any part in training the model.

The process of training, validation, and testing was performed identically in
each of the three parts of the study. The root mean square propagation algorithm
(RMSProp) [27] was used to optimize the parameters in a given learning process.
The size of the mini-batch was set to 30 samples. For comparative purposes, each
part of the research was performed twice as independent learning processes lasting
50 and 100 epochs. In the learning process, a half-mean-squared-error was used as
a loss function. After each epoch, the hyperparameters were fine-tuned based on the
validation set. Then, the order of samples in the training set was mixed, and the next
epoch of the learning process was performed, which reduced the risk of the model
incorrectly learning the schema of consecutive images.

In each of the conducted learning processes, the course of the graphs was correct,
and there were no sudden deviations (peaks). In the first five epochs, there has been
a sharp decline in loss and RMSE figures. The course of the plot with successive
epochs indicated a decrease in the oscillation range of the RMSE function and
a gradual decrease in the value of the loss function.

4. Results and discussion

The research has resulted in many trained network models. Additional markings
were introduced to systematize the analysis of the results. The process designations
Part1, Part2 and Part3 refer to the datasets used. The letter A or B indicates that
the number of epochs used in a given learning process is A – 50 epochs, B – 100
epochs. The correctness of the operation of each of the learned network models was
verified on the previously separated test sets. Each test set sample has one real/correct
answer. Thus, each test set has a vector of real responses V (n), where n = 1, ..,N are
consecutive responses for the samples of a given test set, and N is its number. Since
each model is a regression model, it returns one numeric value as a response for each
sample in the test set; this is the so-called predicted value. The set of all predicted
values for a given test set is a value vector denoted as V p(n). For the analysis of the
obtained results, the error value B(n) was calculated for each sample, the formula (1):

B(n) =V (n)−V p(n). (1)
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In the analysis of the results, the root mean square error (RMSE) parameter was taken
into account, which was calculated for each training process, the formula (2):

RMSE =

√
1
N ∑

n∈N
B(n)2. (2)

The real value is the distance to the object in the range of 1 m to 9 m. So it seems
evident that the greater the distance to the subject, the greater the blur in the images.
Thus, the risk of error in the distance estimation is also greater. Likewise, the shorter
the distance, the greater the chances of higher accuracy (lower error). Therefore,
the error value expressed in meters, as well as the RMSE seems to be insufficient.
So it was decided to count the following parameters. First, for each sample n ∈ N, the
percentage of error Pb(n) to its real value was calculated in the formula (3):

Pb(n) =
B(n)∗100

V (n)
. (3)

In regression models, to calculate the accuracy of their operation, it is necessary
to define when the predicted answer is correct. By definition, the predicted and actual
response should not be equal because it would indicate over-training. Hence, the next
step is determining the thresholds p for the permissible error Pb(n). Three thresh-
olds are defined: p1, when Pb(n) ≤ 5%; p2, when Pb(n) ≤ 10%; and p3, when
Pb(n) ≤ 20%. According to these thresholds, a given predicted value is classified
into individual sets of results. Then, the number of individual sets of network model
responses that meet the given threshold was counted, which was marked as follows:
N1 for p1, N2 for p2, and N3 for p3. Then, the accuracy (Acc1, Acc2, Acc3) for
individual sets was calculated as the quotient of the size of the set of correct answers
relative to the set threshold (N1, N2, N3) to the size of the entire test set (N).

Six independent CNN model learning processes were carried out in the research.
Three processes lasted 50 epochs (Part1.A, Part2.A, and Part3.A), and three lasted
100 epochs (Part1.B, Part2.B, and Part3.B). Each of the mentioned processes was
performed in 8-fold cross-validation. 48 CNN learned models were obtained. Accord-
ing to the previously presented formulas, calculations were performed independently
for each of the 48 testing processes.

As the aim of the research, it was assumed that a correctly functioning model
should return values with an error within 10% (threshold p2). For the analysis, the
number and accuracy for the 5% threshold (p1) were also checked, assuming that
these are perfect results. These statistics were also made for 20% (threshold p3), but
it was only to check the convergence of the results returned by the network model.

Due to a large number of different values, the obtained calculation results
were systematized. Table 1 shows the average values for each of the six processes.
In addition, the value of the standard deviation (SD) obtained within individual pro-
cesses is also included. The table also consists of the average learning and validation
time in seconds.
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Table 1. Average results of CNN learned model testing across all six processes: Part1.A, Part2.A,
Part3.A, Part1.B, Part2.B and Part3.B

N Time Acc1 Acc2 Acc3 RMSE
Part1.A Aver. 1178 733 77.4 97.8 99.9 0.246

SD 12.33 7.79 1.59 0.16 0.033
Part2.A Aver. 2300 1505 82.8 96.8 99.6 0.208

SD 45.49 11.19 3.57 0.50 0.041
Part3.A Aver. 4600 1837 92.6 98.8 99.9 0.133

SD 39.22 4.35 0.96 0.19 0.035
Part1.B Aver. 1178 1456 91.8 99.1 99.9 0.157

SD 18.38 4.62 0.89 0.09 0.039
Part2.B Aver. 2300 2952 90.6 97.7 99.6 0.149

SD 41.82 8.66 3.10 0.55 0.039
Part3.B Aver. 4600 5909 96.3 99.7 100.0 0.121

SD 77.45 2.92 0.34 0 0.033

Moreover, for better visualization of numerical statements, individual values are
presented in the form of charts. Figure 3 shows the precision values obtained for the
individual processes of each Test Part. Figure 4 shows the average accuracy values
obtained from each Part of the test.
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Fig. 3. Accuracy values obtained for the individual processes of each Part of the research.
The values for the acceptable thresholds are marked with colors: red for the 5% threshold,

green for the 10% threshold, and blue for the 20% threshold

It is easy to notice that the most significant discrepancies in the accuracy of indi-
vidual processes are found for the p1 threshold (marked in red). From the processes
lasting 50 epochs, the lowest average accuracy was the Part1.A process (only 77.4%
with SD = 7.79). Part2.A obtained a slightly better average accuracy value (82.8%
with SD = 11.19). The process Part3.A obtained the highest average accuracy (92.6%
with the lowest value SD = 4.35). At the same time, better results are obtained for
the tests run for 100 epochs. The best (Part3.B) achieved an average accuracy value
of 96.3% with SD = 2.92. But it is also the process with the longest learning time
(average 5909 s).
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When analyzing the results for the p2 threshold (marked in green), it should be
stated that a much greater convergence characterizes them. In each of the tested
six parts, the average accuracy exceeded 96.8% (the lowest is for Part2.A where
SD = 3.57). The best accuracy was achieved again for Part3.B (as much as 99.7%
with SD = 0.34). It is worth emphasizing the result obtained for Part1.B, where
the average accuracy was 99.1% and SD = 0.89. As a reminder, it is a process with
the most miniature data set, a relatively short learning time (second in sequence),
and a learning process lasting 100 epochs.

The results obtained for the p3 threshold (marked in blue) confirm the high con-
vergence of all parts. The average accuracy value for each of them exceeded 99.5%.
In practice, for almost all of the samples, an error does not exceed 20%.
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The summary of RMSE values is presented in Figure 5. It is easy to notice that
better results were achieved for longer learning processes (B) than for shorter learning
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processes (A). In addition, as expected, there is a relationship between the size of the
data set and the results. The best results obtained in this metric were for Part3.B.

It should also be mentioned that, as predicted, the larger the dataset used in the
training process, the more time it took to train the CNN model. A similar relationship
exists between the number of epochs and the training time. The shortest learning time
was achieved for the smallest set and 50 epochs, while the longest time was obtained
when training on the set Db3 and 100 epochs.

Figure 6 shows the correlation graphs of the true distance values and the values
predicted by the model.
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Fig. 6. Graphs showing the correlation of the true distance values and the values predicted
by the model for sample processes from: a) Part1.A4; b) Part2.A7; c) Part3.A8;

d) Part1.B4; e) Part2.B3; f) Part3.B7

5. Conclusions

As part of the research described in this article, a distance estimation system
was developed. The works were carried out to potentially use them in supporting
the autonomy of vehicle traffic. For this purpose, the regression model of the CNN
network was used. Testing the developed prototype achieved excellent results. Only
pairs of stereo images are used as sources of information. The research is based
on the phenomenon of disparity. The use of grayscale images significantly reduces
computational complexity.

Each of the six learning parts was successful and had the right results. All of them
can be as support systems. Finally, when considering which model to apply, one
should guide one primarily by what is available and the assumed goals. If accuracy
is the most important for the user and has many computing resources, then Part3.B
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will be the best choice. For more than 96% of the samples, the estimated distance did
not exceed the 5% difference from the true distance. Moreover, almost all (99.7%)
results fell within the 10% error limit.

On the other hand, Part1.B will be more than enough if the potential user has
limited computing resources. Then the learning process is fast, and the model easily
achieves accuracy above 99% for the p2 threshold. His learning time was over three
times shorter than the Part3.B.

The better learning outcomes for processes using more extensive data sets were
not surprising. All the results were correct, but the outcome analysis shows that a bet-
ter solution is to use 100 epochs to train the model. In this case, the lower entropy in
distance estimation, lower (better) RMSE value, and better (greater) accuracy were
obtained for the processes named Part1.B, Part2.B, and Part3.B.

The hybrid solution presented in the article combines the following issues: stereo-
vision, image analysis, and deep learning. It can be successfully used for engineering
solutions as a source of information. E.g., systems support the autonomy of vehicle
traffic.
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