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1. Introduction

Rummler introduced in his paper [1] some new operators like grad, div, j, α , tr in
the bundle of scalar differential forms on a Riemannian manifold M. He derived there
many of their nice algebraic, analytic and geometric properties. In the present paper
we extend the action of Rummler operators to the bundle of forms with values in
a vector bundle. In particular, to the bundle of forms with values in the tangent
bundle. Such forms will be called here vector-valued forms or shortly vector forms.
We derive almost all the Rummler results in this more general setting. We concen-
trate mainly on two differential operators: grad and div as the operators that poten-
tially can find applications in geometry, physics or engineering. With this in mind,
we derive important properties of the operators. In particular, we prove Theorem 1
that the two operators are differentiations of the algebra of forms and Theorem 2
which states that the operators commute with the Hodge star operator. We also prove
that the operators grad and -div are formally adjoint to each other with respect to
the global scalar product (see: Theorem 4). The next properties of the operators,
especially that from Lemma 5 and Lemma 6, lead in a direct way to Theorem 5
with the Weitzenböck formula establishing a relation between two Laplacians on
vector valued forms: the Rummler Laplacian divgrad and the Hodge-de Rham lapla-
cian ∆. These two important Laplacians, though both being differential operators of
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order two, differ essentially only by an operator of order zero, i.e., by an endomor-
phism of the bundle the operators act on. Moreover, the shape of the endomorphism is
explicitly given in formula (28). Its alternative version (30) emphasizes a dependence
of the endomorphism on the curvature of the Riemannian manifold. This fact and the
importance of the Hodge-de Rham Laplacian in geometry and physics is a source of
many applications. Examples of such applications may be found eg., in [2] [3], or [4].
Recall that, in particular, by the standard Bochner technique we can get information
on the existence such important deformations as isometric, projective, conformal
or harmonic (cf. [5]). Moreover, one can also get estimates for the lower bounds
for spectra of some differential operators like, eg., the Hodge-de Rham, Ahlfors or
Lichnerowicz Laplacians (cf. [6], [7] or [8]).

Our aim is not only a generalization of the Rummler results but also a unification
of his and ours results. We have managed to achieve that aim, by adopting suitable
definitions for exterior products of different types of forms and for different types of
exterior derivations.

A short review of some possible applications may be found in Section 6. Now,
let us only mention that the derived here properties of the two differential operators:
the gradient and the divergence enable formulating and proving an essential gener-
alization of the classical divergence theorem. The generalization is dealing with the
divergence of a vector form of any degree. It holds not only for geometrically flat
spaces like the bounded euclidean domains, but also more generally, for Rieman-
nian manifolds with the boundary. In this case, the Riemannian metric of a manifold
enables emphasizing a possible substantial inhomogeneity of the considered domain
(body). Some initial information on the mentioned subject may be found in [9].
The generalization and some of its applications in physics and engineering were also
a subject of the lectures by the second named author at the Conferences on Mathemat-
ical Modeling in Physics and Engineering (MMPE’22 and MMPE’23). An extended
and more detailed version completed with more advanced applications will be the
subject of a subsequent paper.

2. Spaces of forms, exterior products, metrics and the Hodge star

For the notions of bundles of tensors and exterior forms and for the tensor and exterior
products discussed in this section, we refer to [10].

Let M be an oriented Riemannian manifold, possibly also with a boundary,
dimM = n, with a scalar product (riemannian metric) <,>=<,>g in the tangent
bundle T . The metric can naturally be extended to the cotangent bundle T ∗.
The extension will be denoted by the same symbol. Let Λ

p = C∞(ΛpT ∗) be the
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space of alternating scalar p-forms on M. The exterior product ∧ : Λ
p×Λ

q −→ Λ
p+q

of two such p- and q-forms at x ∈ M is defined as follows:

(ϕ ∧ψ)(v1, . . . ,vk,vk+1, . . . ,vk+l) =

∑
σ∈sh(k,l)

signσϕ(vσ(1), . . . ,vσ(k))ψ(vσ(k+1), . . . ,vσ(k+l)). (1)

for v1, . . . ,vk,vk+1, . . . ,vk+l ∈ Tx where sh(k, l) is the set of all shuffles of type (k, l).
The scalar product of two simple p-forms ϕ = ϕ1∧·· ·∧ϕp and ψ = ψ1∧·· ·∧ψp

is defined by the determinant:〈
ϕ1 ∧·· ·∧ϕp,ψ1 ∧·· ·∧ψp

〉
Λp = ∑

σ∈Sp

signσ
〈
ϕ1,ψσ1

〉
g · · · ⟨ϕp,ψσp⟩g, (2)

where ϕ1, . . . ,ϕp,ψ1, . . . ,ψp ∈ Λ
1 = T ∗1, and then extended to the space of all

p-forms be linearity.
All manifolds and mappings are assumed to be smooth, i.e. of class C∞. For any

bundle E on M, we will often denote C∞(E) – the space of sections of E simply by E.
Let E be a vector bundle on M with a scalar product <,>E . Consider the following
spaces of forms:
Λ⃗

p =C∞(ΛpT ∗⊗T ) – the space of vector p-forms
Λ

p(E) =C∞(ΛpT ∗⊗E) – the space of scalar p-forms with values in E
Λ⃗

p(E) =C∞(ΛpT ∗⊗E ⊗T ) – the space of vector p-forms with values in E.
Define exterior products (all denoted by the same symbol ∧) for all the possible

pairs of forms:

∧ :



Λ
p × Λ⃗

q −→ Λ⃗
p+q

Λ
p ×Λ

q(E)−→ Λ
p+q(E)

Λ
p × Λ⃗

q(E)−→ Λ⃗
p+q(E)

Λ⃗
p × Λ⃗

q −→ Λ
p+q

Λ⃗
p ×Λ

q(E)−→ Λ⃗
p+q(E)

Λ⃗
p × Λ⃗

q(E)−→ Λ
p+q(E)

Λ
p(E)×Λ

q(E)−→ Λ
p+q

Λ
p(E)× Λ⃗

q(E)−→ Λ⃗
p+q

Λ⃗
p(E)× Λ⃗

q(E)−→ Λ
p+q

according to the following examples that enable the natural understanding of the
exterior product in all the remaining cases:

ω ∧ (η ⊗Y ) = ω ∧η ⊗Y

(ω ⊗X)∧ (η ⊗Y ) = ω ∧η ·
〈
X ,Y

〉
g

(ω ⊗ s)∧ (η ⊗ t) = ω ∧η ·
〈
s, t
〉

E

(ω ⊗ s)∧ (η ⊗ t ⊗Y ) = ω ∧η ·
〈
s, t
〉

E ⊗Y
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(ω ⊗ s⊗X)∧ (η ⊗ t ⊗Y ) = ω ∧η ·
〈
s, t
〉

E ·
〈
X ,Y

〉
g.

The accepted definitions have this advantage that they unify all the possible
actions in the sets of scalar and vector forms and such forms with values in E within
the only symbol ∧. The scalar products in T , Λ

p and E define the natural scalar
products in Λ⃗

p = Λ
p ⊗T , Λ

p(E) = Λ
p ⊗E, Λ⃗(E) = Λ

p ⊗E ⊗T by〈
ω ⊗X ,η ⊗Y

〉
=
〈
ω,η

〉
Λp ·
〈
X ,Y

〉
g,〈

ω ⊗ s,η ⊗ t
〉
=
〈
ω,η

〉
Λp ·
〈
s, t
〉

E〈
ω ⊗ s⊗X ,η ⊗ t ⊗Y

〉
=
〈
ω,η

〉
Λp ·
〈
s, t
〉

E ·
〈
X ,Y

〉
g,

respectively.
From now on all the scalar products will be denoted simply by

〈
,
〉
.

The Riemannian structure and the orientation define on M a unique form Ω of
the maximal degree n characterized by the condition ΩM(e1, . . . ,en) = 1 for any local
positively oriented orthonormal frame of vectors e1, . . . ,en on M. By taking the dual
frame of 1-forms: e∗1, . . . ,e

∗
n, we get easily, that locally,

ΩM = e∗1 ∧ . . .∧ e∗n.

Recall (cf. [10]) that the classical Hodge star is the linear operator, ⋆ : Λ
p −→

Λ
n−p, defined by

ϕ ∧⋆ψ =
〈
ϕ,ψ

〉
ΩM (3)

for ϕ,ψ ∈ Λ
p.

One can calculate that then, in local oriented orthogonal frame e∗1, . . . ,e
∗
n,

⋆(e⋆i1 ∧ . . .∧ e∗ip
) = sgn(i1, . . . , ip, j1, . . . , jn−p)(e∗j1 ∧ . . .∧ e∗jn−p

)

for any permutation i1, . . . , ip, j1, . . . , jn−p of 1, . . . ,n. This easily implies that

⋆⋆ |Λp= (−1)p(n−p)id |Λp . (4)

3. Differential operators

Let ∇ be the Levi-Civita connection in the tangent bundle T ,

∇ : T −→ T ∗⊗T

i.e., the unique connection in T which is metric and torsion free, i.e. the following two
conditions: ∇

〈
s, t
〉

g =
〈
∇s, t

〉
g +
〈
s,∇t

〉
g and ∇XY −∇Y X − [X ,Y ] = 0 are satisfied

for all vector fields X and Y (cf. [2] or [3]).
The connection ∇ can be extended naturally to the cotangent bundle, and next to

any tensor bundle on M by the Leibniz rule and finally to any of its subbundle so,
in particular, to the bundle Λ

p, for p = 1,2, . . . .



The gradient and the divergence for vector-valued forms 35

Assume also, that the bundle E is equipped with a metric connection

∇
E : E −→ T ∗⊗E,

i.e. such connection that ∇
E〈s, t〉E =

〈
∇

Es, t
〉

E +
〈
s,∇Et

〉
E .

Let: d : Λ
p −→ Λ

p+1 be the standard operator of derivation of scalar exterior
forms. Define three next derivation operators:

– on vector p-forms, d⃗ : Λ⃗
p −→ Λ⃗

p+1:

d⃗(ω ⊗X) = dω ⊗X +(−1)p
ω ∧∇X ,

– on scalar p-forms with values in E, d∇ : Λ
p(E)−→ Λ

p+1(E):

dE(ω ⊗ s) = dω ⊗ s+(−1)p
ω ∧∇

Es,

– on vector p-forms with values in E, d⃗E : Λ⃗
p(E)−→ Λ⃗

p+1(E):

d⃗E(ω ⊗ s⊗X) = dω ⊗ s⊗X +(−1)p
ω ∧ (∇Es⊗X + s⊗∇X).

Note that ∇X and ∇
Es are treated here as one-forms with values in the bundles

T and E, respectively. For simplicity, all the exterior derivations d,⃗d,dE ,⃗dE will
be denoted by the same letter d, all the connections ∇,∇E by the same symbol ∇.
By standard calculations we derive that for every ξ ∈Λ

p (or Λ⃗
p or Λ⃗

p(E)) and η ∈Λ
q

(or Λ⃗
q or Λ⃗

q(E)) we have – in each case – the same rule saying that d is antiderivation:

d(ξ ∧η) = dξ ∧η +(−1)p
ξ ∧dη . (5)

Example 1 If, near x ∈ M, e∗1, . . . ,e
∗
n is a local orthonormal frame normal at x in the

sense that ∇e∗i = 0, i = 1, . . . ,n , then, at x, d
(
e∗i1 ∧ . . .∧e∗ip

)
= 0. So, by the definition

of derivation operator d,

d
(
e∗i1 ∧ . . .∧ e∗ip

⊗ s
)
= (−1)pe∗i1 ∧ . . .∧ e∗ip

∧∇s. (6)

CONVENTION 1 Here and afterwards, e1, . . . ,en ∈ T is an local orthonormal frame,
and e∗1, . . . ,e

∗
n ∈ T ∗ is the dual one.

Local expressions within these frames give us better understanding of the action
of the considered operators.

Proposition 1 The exterior derivation has the following local form:

d =
n

∑
j=1

e∗j ∧∇e j . (7)

PROOF Just a calculation in local orthonormal frames e1, . . . ,en ∈ T and
e∗1, . . . ,e

∗
n ∈ T ∗. See also ( [11], Lemma 1.4.3). ■
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Now (in analogy to [1]), define two operators of order zero that will be used in the
construction of the two main operators: the gradient and the divergence.

Definition 1 j : Λ
p(E) −→ Λ⃗

p−1(E) is the linear operator defined locally on simple
forms by:

j(e∗i1 ∧ . . .∧ e∗ip
⊗ s) =

p

∑
k=1

(−1)k−1e∗i1 ∧ . . .∧ ê∗ik . . .∧ e∗ip
⊗ s⊗ eik . (8)

Lemma 1 j is antiderivation i.e. for any ξ ∈ Λ
p(E), η ∈ Λ

q(E)

j(ξ ∧η) = jξ ∧η +(−1)p
ξ ∧ jη .

PROOF Without loss of generality, we check the formula for simple tensors of the
form: ξ = e∗i1 ∧ . . .∧e∗ip

⊗ s and η = e∗j1 ∧ . . .∧e∗jq ⊗ t. And this is just a calculation.■

The operator j commutes with the covariant derivative ∇ in the following sense:

Lemma 2 For every X ∈ T we have ∇X j = j∇X 2

PROOF Let x ∈ M and e1, . . . ,en ∈ T , e∗1, . . . ,e
∗
n ∈ T ∗ be dual local orthonormal

frames, normal at x (∇e j = 0, ∇e∗j = 0 at x). Then:

∇X j(e∗i1 ∧ . . .e∗ip
⊗ s) = ∇X

(
p

∑
k=1

(−1)k−1e∗i1 ∧ . . . ê∗ik ∧ e∗ip
⊗ s⊗ eik

)

=
p

∑
k=1

(−1)pe∗i1 ∧ . . . ê∗ik ∧ e∗ip
⊗∇X s⊗ eik = j∇X

(
e∗i1 ∧ . . .e∗ip

⊗ s
)

at x.

Definition 2 α : Λ⃗
p(E)−→ Λ

p+1(E) is the linear operator defined locally on simple
tensors by:

α(e∗i1 ∧ . . .∧ e∗ip
⊗ s⊗ e j) = e∗j ∧ e∗i1 ∧ . . .∧ e∗ip

⊗ s (9)

Unfortunately, α has no property similar to that from Lemma 1. We can prove yet
that α |

Λ⃗p(E) and j |Λp+1(E) are adjoint to each other:

Lemma 3 For ϕ ∈ Λ⃗
p(E) (or Λ⃗

p) and ψ ∈ Λ(E) (or Λ
p)〈

α(ϕ),ψ
〉
=
〈
ϕ, j(ψ)

〉
(10)

PROOF Let i1 < .. . < ip. If j /∈ {i1, . . . , ip} then〈
α(e∗i1 ∧ . . .∧ e∗ip

⊗ s⊗ e j),e∗j ∧ e∗i1 ∧ . . .∧ e∗ip
⊗ t
〉

=
〈
e∗j ∧ e∗i1 ∧ . . .∧ e∗ip

⊗ s,e∗j ∧ e∗i1 ∧ . . .∧ e∗ip
⊗ t
〉
=
〈
s, t
〉
.
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On the other hand〈
e∗i1 ∧ . . .∧ e∗ip

⊗ s⊗ e j, j(e∗j ∧ e∗i1 ∧ . . .∧ e∗ip
⊗ t)

〉
=
〈
e∗i1 ∧ . . .∧ e∗ip

⊗ s⊗ e j,e∗i1 ∧ . . .∧ e∗ip
⊗ t ⊗ e j

〉
−
〈
e∗i1 ∧ . . .∧ e∗ip

⊗ s⊗ e j,
p

∑
k=1

(−1)k−1e∗j ∧ e∗i1 ∧ . . .∧ ê∗ik . . .∧ e∗ip
⊗ s⊗ eik

〉
=
〈
s, t
〉
−0 =

〈
s, t
〉
,

so, the both sides of (10) are equal. If j ∈ {i1, . . . , ip} then the both sides are equal to
zero. ■

The operator α commutes with ∇ in the following sense:

Lemma 4 For every X ∈ T we have:

∇X α = α∇X

PROOF Similar to that of Lemma 2. ■

Finally define in a standard way the trace operator.

Definition 3 The trace opertor, tr : Λ⃗
p(E)−→ Λ

p−1(E), is defined by:

trΦ(ei1 , . . . ,eip−1) =
n

∑
i=1

〈
Φ(ei,ei1 , . . . ,eip−1),ei

〉
(11)

where e1, . . . ,en ∈ T is, as usual, a local orthonormal frame. 2

4. The gradient and the divergence

In this section, two first order linear differential operators grad and div, will be
introduced. The first one acts on exterior forms with values in a bundle E and gener-
alizes the classical gradient acting on functions, the other one acts on vector exterior
forms with values in a bundle E and generalizes the classical divergence acting on
vector fields.

Definition 4 The gradient is the differential operator, grad : Λ
p(E) −→ Λ⃗

p(E),
defined by:

grad = jd+dj. (12)

Example 2 If, near x ∈ M, ξ = e∗i1 ∧ . . . ∧ e∗ip
⊗ s for a local orthonormal frame

e∗1, . . . ,e
∗
n normal at x in the sense that ∇e∗i = 0, i = 1, . . . ,n, then, at x,

gradξ = e∗i1 ∧ . . .∧ e∗ip
⊗ (∇s)♭ (13)
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where, for any one form ω (including forms with values in a vector bundle), ω
♭ is

defined by:

ω(X) =< ω
♭,X >g, X ∈ TxM. (14)

If, in particular,

ξ = f e∗i1 ∧ . . .∧ e∗ip
(15)

for some function f , then

gradξ = e∗i1 ∧ . . .∧ e∗ip
⊗grad f at x. (16)

PROOF Just a calculation in the local orthonormal frame normal at x. ■

Definition 5 The divergence is the differential operator, div : Λ⃗
p(E) −→ Λ

p(E),
defined by:

div = trd+dtr. (17)

Example 3 Similarly, as in Example 2, we have, in a local orthonormal frame normal
at x, that

div(e∗i1 ∧ . . .∧ e∗ip
⊗ s⊗ e j) = e∗i1 ∧ . . .∧ e∗ip

⊗∇e j s at x. (18)

Theorem 1 The operators grad and div satisfy the following relations:

a) ξ ∈ Λ
p(E),η ∈ Λ

p(E) =⇒ grad(ξ ∧η) = (gradξ )∧η +ξ ∧gradη ,

b) ξ ∈ Λ
p(E),η ∈ Λ⃗

p(E) =⇒ div(ξ ∧η) = (gradξ )∧η +ξ ∧divη . 2

PROOF

a) Let ξ = e∗i1 ∧ . . .∧ e∗ip ⊗ s and η = e∗j1 ∧ . . .∧ e∗jq ⊗ t. By (13) and (3) we have
sequentially:

grad(ξ ∧η) = grad(e∗i1 ∧ . . .∧ e∗ip
∧ e∗j1 ∧ . . .∧ e∗jq) ·

〈
s, t
〉
)

= (e∗i1 ∧ . . .∧ e∗ip
∧ e∗j1 ∧ . . .∧ e∗jq)⊗ (∇

〈
s, t
〉
)♭

= (e∗i1 ∧ . . .∧ e∗ip
∧ e∗j1 ∧ . . .∧ e∗jq)⊗

〈
(∇s)♭, t

〉
+(e∗i1 ∧ . . .∧ e∗ip

∧ e∗j1 ∧ . . .∧ e∗jq)⊗
〈
s,(∇t)♭

〉
=
(

e∗i1 ∧ . . .∧ e∗ip
⊗ (∇s)♭

)
∧
(

e∗j1 ∧ . . .∧ e∗jq ⊗ t
)

+
(

e∗i1 ∧ . . .∧ e∗ip
⊗ s
)
∧
(

e∗j1 ∧ . . .∧ e∗jq ⊗ (∇t)♭
)
= (gradξ )∧η +ξ ∧ (gradη).

The proof of b) is similar. ■
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Extend the classical Hodge star operator defined by (3) to the bundle of forms
with values in E and to the bundle of vector forms with values in E:

The Hodge star operators ⋆ : Λ
p(E)−→ Λ

n−p(E) and ⋆ : Λ⃗
p(E)−→ Λ⃗

n−p(E) are
defined by:

⋆
(
ϕ ⊗ s

)
=
(
⋆ϕ
)
⊗ s (19)

and

⋆
(
ϕ ⊗ s⊗X

)
=
(
⋆ϕ
)
⊗ s⊗X , (20)

respectively.

Theorem 2 The operators grad and div commute with the Hodge star:

a) ⋆grad = grad⋆ ,

b) ⋆div = div⋆ . 2

PROOF

a) By (13) and the definition of the Hodge star,

⋆grad
(
e∗i1 ∧ . . .∧ e∗ip

⊗ s
)
= ⋆

(
e∗i1 ∧ . . .∧ e∗ip

⊗ (∇s)♭
)
= ⋆

(
e∗i1 ∧ . . .∧ e∗ip

)
⊗ (∇s)♭.

Similarly,

grad ⋆
(
e∗i1 ∧ . . .∧ e∗ip

⊗ s
)
= grad

(
⋆
(
e∗i1 ∧ . . .∧ e∗ip

)
⊗ s
)
= ⋆

(
e∗i1 ∧ . . .∧ e∗ip

)
⊗ (∇s)♭.

The proof of b) is similar. ■

Theorem 3 The operators grad and −div are formally adjoint, i.e. for ξ ∈ Λ
p(E)

and η ∈ Λ⃗
p(E): (

gradξ ,η
)
=
(
ξ ,−divη

)
,

if only ξ or η is of compact support not intersecting the boundary.
Here (

ζ ,ψ
)

:=
∫

M
ζ ∧⋆ψ, (21)

for ζ ,ψ ∈ Λ
q(E) (or ζ ,ψ ∈ Λ⃗

q(E)). 2

PROOF For ξ ∈ Λ
p(E), η ∈ Λ⃗

p(E) the exterior form ξ ∧ ⋆η is of the maximal
degree, so, by the definition of divergence,

div(ξ ∧⋆η) = dtr(ξ ∧⋆η). (22)
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On the other hand, by Theorem 1 b) and by Theorem 2 b), we get

div(ξ ∧⋆η) = gradξ ∧⋆η +ξ ∧⋆divη ,

so, by (22),

d tr(ξ ∧⋆η) = gradξ ∧⋆η +ξ ∧⋆divη .

Integrating over M, applying the Stokes theorem and using the compactness of
supports and the assumptions thet that they are not intersecting the boundary, we get
the assertion. ■

Definition 6 The differential operator δ : Λ
p(E)−→ Λ

p−1(E) is defined by

δ = (−1)np+n ⋆ d ⋆ . (23)

Remark 1 Note that δ differs here by sign from the codifferential that occurs usually
in differential geometry and denoted there by the same letter (cf. [2] or [3]). 2

Theorem 4 The operators d and −δ are formally adjoint, i.e. for ξ ∈ Λ
p(E),

η ∈ Λ
p+1(E) (or ξ ∈ Λ⃗

p(E), η ∈ Λ⃗
p+1(E)):(

dξ ,η
)
=
(
ξ ,−δη

)
,

if only ξ or η is of a compact support not intersecting the boundary. 2

PROOF By the rule of differentiation of the wedge product (cf. (5)) we have

d(ξ ∧⋆η) = dξ ∧⋆η +(−1)p
ξ ∧d⋆η .

Integrating over M and using the Stokes theorem, we get

0 =
∫

M
dξ ∧⋆η +

∫
M
(−1)p

ξ ∧d⋆η .

Applying (4) adapted to the form d⋆η of degree n− p, we get∫
M

dξ ∧⋆η =−
∫

M
(−1)p

ξ ∧ (−1)p(n−p) ⋆⋆d⋆η

or ∫
M

dξ ∧⋆η =−
∫

M
ξ ∧⋆

(
(−1)pn ⋆d⋆η

)
.

Now, by (23) adapted to the action on a form of the degree p+1 and by (21), we get
the assertion. ■

Lemma 5 The following relations between the operators d, δ and grad hold:

a) d = α grad,
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b) δ = trgrad. 2

PROOF a)

α grad
(
e∗i1 ∧ . . .∧ e∗ip

⊗ s
)
= α

(
e∗i1 ∧ . . .∧ e∗ip

⊗ (∇s)♭
)

= α
(
e∗i1 ∧ . . .∧ e∗ip

⊗
n

∑
j=1

e j ⊗ s j
)
=

n

∑
j=1

e∗j ∧ e∗i1 ∧ . . .∧ e∗ip
⊗ s j,

for some sections s j of E. On the other hand, by (6),

d
(
e∗i1 ∧ . . .∧ e∗ip

⊗ s
)
=(−1)pe∗i1 ∧ . . .∧ e∗ip

∧ (∇s)

= (−1)pe∗i1 ∧ . . .∧ e∗ip
∧

n

∑
j=1

e∗j ⊗ s j =
n

∑
j=1

e∗j ∧ e∗i1 ∧ . . .∧ e∗ip
⊗ s j.

The proof of b) is similar. ■

5. The Weitzenböck formula

The Weitzenböck formula establishes a relation between two Laplacians in the
bundle of forms with values in a vector bundle: the Rummler Laplacian divgrad and
the Hodge-de Rham Laplacian ∆. These two important Laplacians though both being
differential operators of the second order differ essentially only by a zero order term,
i.e., by an endomorphism of the bundle the operators act on. The most interesting is
that this zero order operator (tensor) depends essentially on the geometry of the Rie-
mannian manifold M or, more precisely, on the curvature tensor R of the Riemannian
metric g.

Recall (cf. [11]) that the Hodge-de Rham Laplacian on forms with values in
a vector bundle is the second order linear differential operator defined as follows:

∆ = δ d+dδ . (24)

Remark 2 Note that ∆ differs here by sign from the the Hodge-de Rham Laplacian
that usually occur in differential geometry (see also Remark 1). 2

Recall (cf. [2] or [3]) that for X ,Y ∈ T the curvature RXY of ∇ in directions X ,Y
is defined by

RXY = ∇X ∇Y −∇Y ∇X −∇[X ,Y ]. (25)

It is known that the curvature operator is in fact an operator of order zero, so it
can be regarded as an endomorphism of the bundle on which it acts. R and its trace R
belong to the most important operators in differential geometry. The other will appear
in the geometric version of the Weitzenböck formula below.
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Definition 7 The operator R, called the Ricci endomorphism, is defined locally by
the curvature tensor R as follows:

R = ∑
i, j

e∗j ∧ ιeiRe jei . (26)

Here ιei denotes the substitution of the vector ei on the place of first argument. 2

Crucial for the proof of the Weitzenböck formula is the following fact:

Lemma 6

tr j = 0 and δ = trd j. (27)

PROOF For ϕ ∈ Λ
p(E) we have by (8) and (11) that

(tr j)ϕ(ei1 , . . . ,eip−1) =
n

∑
i=1

〈
(jϕ)(ei,ei1 , . . . ,eip−1),ei

〉
=

n

∑
i=1

(ιeiϕ)(ei,ei1 , . . . ,eip−1) = 0

and

δ = trgrad = tr(dj+ jd) = trd j+ tr jd︸︷︷︸
0

= trd j.

Now we are ready to state:

Theorem 5 (Weitzenböck Formula)

divgrad = ∆+ trd2 j . (28)

PROOF By b) of lemma 5 and (27) we have sequentially

divgrad = (trd + dtr)(jd + dj) = trd jd︸ ︷︷ ︸
δd

+trd2 j+dtr jd︸ ︷︷ ︸
0

+ trd trd j︸ ︷︷ ︸
dδ

= ∆+ trd2 j,

so, the proof is completed. ■

Note that, in the light of formula (28), to establish the announced relation be-
tween the operator of form: divgrad−∆ and the curvature operator R, it is enough to
establish the relation between the operators d2 and R. We have namely:

Proposition 2 For ϕ ∈ Λ⃗
p(E) (or Λ⃗

p)

d2
ϕ = ϕ ∧R. (29)
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PROOF A standard calculation with the use of local definitions (7) and (25) of the
exterior derivative d and the curvature operator R, respectively. ■

Now, by using (29) and (8), we can easily confirm that the last summand in (28)
is just the Ricci endomorphism defined in (26). The Weitzeböck formula can then be
written in its alternative (in fact more geometric) shape:

divgrad = ∆+R. (30)

Since R depends on R, formula (30) exposes in fact the dependence on curvature
tensor R, i.e., on the geometry of M.

6. Conclusions and possible applications

The properties of the two operators investigated in the present paper: the gradient
and the divergence enable formulating and proving an extension of the classical di-
vergence theorem (one of the most important results of modern calculus with a wide
spectrum of applications) onto vector valued forms. Its importance – especially when
possible applications are considered – comes from the fact that it deals with a vector
field. Vector fields represent namely a displacement of forces acting on a physical
body. In engineering practice, the values of the forces can only be measured at the
boundary. The divergence theorem gives then some information on what is going
inside the body [9, 12].

Moreover, the vector character of the forces enables setting up systems of non-
trivial boundary conditions that can be investigated when solving the boundary value
problems. For example, in the theory of elastic body, the following four natural
boundary conditions: Dirichlet, Absolute, Relative and Neumann are considered
(cf. [13, 14]).

The classic gradient of a scalar function is a vector field with the property that
in each particular point of the domain of definition of the function, the vector of the
field points out the direction of the maximal growth of the function. This property is
principal for many possible engineering applications especially for the approximate
methods called the gradient-based methods that are very efficient when optimum or
extreme points are to be detected. For a review of the methods we refer to [15, 16].

Let us note that similar methods will also be applicable in the case of gradient
of forms of any degree considered here, and even in a more general geometric situ-
ation. Indeed, we can namely consider a Riemannian manifold D of dimension n, i.e.,
a region (domain) D equipped with a Riemannian scalar product (metric) that
depends essentially on the points of D (for the theory of Riemannian manifolds see
eg. [2] or [3]). In an engineering practice, the domain will be representing a physical
body. The Riemannian metric, considered instead of the Euclidean one, will be rep-
resenting then an inhomogeneity of the material of the body. Let us assume that D
is foliated by p-dimensional submanifolds called the leaves of the foliation (for the
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theory of foliations see eg. [17]). Visual examples of foliations are often supplied by
the nature. For instance, some territories (regions) of rocks in mountains are foliated
by their geologic layers. These layers play then the role of the leaves of foliation.
It is known that the Riemannian metric in D defines on each leaf of the foliation its
unique volume form. These volume forms glue together to a global form of degree
p in D. Under some additional assumptions on the foliation, this globally defined
form, call it ξ , can locally be written in shape (15). But then at any point x ∈ D, the
gradient of ξ defines a unique vector tangent to D at x. In analogy to the gradient of
a function, this vector points out the direction of maximal growth for the norm of ξ .
This norm is related to the displacement of the p-dimensional measure (mass) in D.
Then, in an analogy to the classic gradient methods, we will be able to detect – by
approximate methods – the points of local extreme condensation for the distribution
of mass density in D.
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d’une variété riemannienne. Math. Pures Appl., 259-284.
[7] Pierzchalski, A. (1989). Ricci curvature and quasiconformal deformations of a Riemannian

manifold. Manuscripta Mathematica, 66, 113-127.
[8] Boucetta, M. (2009). Spectra and symmetric eigentensors of the Lichnerowicz Laplacian on Sn.

Osaka J. Math., 46, 239-254.
[9] Pierzchalski, A. (2021). Volume form, vector product and the divergence theorem. Mathe-

matical Modeling in Physics and Engeenering, Czestochowa 2021, Book of abstracts 21-24.
https://km.pcz.pl/konferencja/dokumenty/MMPE21-abstract-book.pdf

[10] Federer, H. (2014). Geometric Measure Theory. Grundlehren Math. Wiss., Springer.
[11] Yu, Y. (2001). The Index Theorem and the Heat Equation Method. World Scientific.
[12] Spivak M. (2018). Calculus on Manifolds, a Modern Approach to Classical Theorems of

Advanced Calculus. CRC Press.
[13] Kozłowski, W., & Pierzchalski, A. (2008). Natural boundary value problems for weighted form

Laplacians. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5(7), 343-367.
[14] Pierzchalski, A. (2017). Gradients: the ellipticity and the elliptic boundary conditions – a jigsaw

puzzle. Folia Mathematica, 19, 65-83.



The gradient and the divergence for vector-valued forms 45

[15] Snyman, J. (2005). Practical Mathematical Optimization: An Introduction to Basic Optimization
Theory and Classical and New Gradient-based Algorithms. Springer.

[16] Rao, S. (2009). Engineering Optimization: Theory and Practice: Theory and Applications. John
Wiley and Sons.

[17] Candel, A., & Conlon, L. (2000), Foliations I. Graduate Texts in Mathematics. Providence,
Rhode Island: AMS.


