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Abstract. The purpose of the research is to prepare a mathematical and numerical model 

for the phenomenon of heat transfer during cryopreservation. In the paper, two popular 

methods, slow freezing and vitrification, are compared. Furthermore, the basic model of 

thermal processes is supplemented by the phenomenon of phase transitions. To determine 

the temperature distribution during cryopreservation processes, one uses the heat transfer 

equation proposed by Pennes. An integral part of the energy equation is the substitute ther-

mal capacity (STC) performed according to the concept named one domain method (fixed 

domain method), The numerical model is developed using the finite difference method 

(FDM) connected with directed interval arithmetic. The final part of the article contains  

the results of numerical simulations. 
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1. Introduction  

Cryopreservation is defined as the technique of freezing and then storing bio-

logical materials at low temperature. Cryopreservation uses cryoprotectants (CPA), 

which are chemical compounds designed to protect biological tissue from damage 

during freezing. The most commonly used cryoprotectants are glycerol (GLY), 

propylene glycol (PG) and dimethylsulfoxide (DMSO). Tissues must be preserved 

with an appropriately concentrated cryoprotectant solution in order for the cells to 

survive after freezing and thawing at liquid nitrogen temperature. The use of the 

right cryoprotectant in the right concentration guarantees a proper freezing process 

and adequate cell viability after thawing. During cryopreservation, CPA molecules 

diffuse into the intracellular space, which can disrupt the osmotic balance of the 

cells and be toxic to them. It is therefore essential to regulate the concentration of 
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CPA in the working fluid. It is important that the cryopreservation process is not 

toxic to cells  (cytotoxicity), that is, it does not lead to cell damage or death [1, 2].  

The two most common methods of cryopreservation are slow freezing and  

vitrification. Historically, the first attempts of cryopreservation were performed by 

slow freezing. It is characterized by a relatively low cooling rate and low concen-

trated solutions of CPA. As a result, this method is considered to have low cytotox-

icity for biological cells. On the other hand, the risk of cell injury due to ice crystal 

formation is high [3]. 

A different approach is presented by vitrification. It relies on supercooling  

the medium with a very high cooling rate and with highly concentrated solutions of 

CPA. It causes the solutions to vitrify (solidify) without formation of ice crystals. 

Vitrification has the potential to induce cytotoxic cell damage [3]. 

Thermal processes are one of the phenomena to be considered during modelling 

cryopreservation. The basic equation that describes heat transfer is the Fourier 

equation [4]. It is a partial differential equation (PDE) that describes the tempera-

ture distribution induced by the transmission of a thermal wave with speed, which 

is infinite [5-7]. 

The analysis of heat transfer in soft tissues can also be performed using another 

parabolic equation, such as the Pennes equation [8]. This equation includes com-

ponents that explain the metabolism of biological structures and the presence of 

blood vessels (perfusion) [5]. 

Examples of the modelling of phase transitions can be found in the literature  

[5, 9-14]. As can be seen, most of them present models related to cryosurgery.  

In contrast, in our work, phase changes are implemented into the energy equation 

to characterize the cryopreservation process. 

Moreover, the literature mainly depicts deterministic models. They represent  

a simplification of the randomness present in living structures. On the other hand, 

the calculations performed for a stochastic model are time-consuming. Our pro-

posed concept is the application of directed interval arithmetic. This approach gives 

results in the form of number ranges, which contain the correct results [7, 15, 16]. 

In our paper, the mathematical and numerical model describes the changes  

in the temperature distribution in a cryopreserved biological tissue. The calculation 

considers the phenomenon of phase transitions introduced by the one-domain 

method. Let us note that phase changes are an integral part of the heat transfer 

equation. The study investigated the cryopreservation of a sample by two different 

techniques: slow freezing and vitrification.  

2. Materials and methods 

The task demonstrates a model of a cylindrical piece of biological material  

immersed in a bath solution in such a way that the bath solution 'touches' the bases 

of the cylinder. Our model replicates the device proposed by Wang et al. [17].  

The concept of the apparatus for the cryopreservation is as follows. The sample 
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immersed in the bath solution is placed in a test tube, which is contained in a sealed 

chamber. The temperature inside the chamber is regulated according to the temper-

ature of working fluid. The temperature of the working fluid varies during the pro-

cess with the cooling rate determined individually for slow freezing and for vitrifi-

cation. The working fluid is liquid nitrogen, and the minimum temperature reached 

by them is equal to –196°C.  

Let us introduce a few words about the bath solution. It is a mixture called 

CPTes2, consisting mainly of water and CPA, more specifically DMSO. The CPTes2 

solution also contains small traces of KCl [18, 19]. The CPTes2 composition was 

invented by Taylor and Hunt [20] and developed by Pegg et al. [21]. The effect of 

the CPA included in bath solution on the behaviour of the biological material is  

ignored in further consideration, focusing instead on the problem of heat transfer. 

It should be noted that the presented research is theoretical, as it represents  

a simulation performed by applying the finite difference method with implemented 

directed interval arithmetic rules. Figure 1 shows a schematic illustration of the 

modelled sample with marked considered domain. 

 

 

Fig. 1. Modelled sample with considered domain 

2.1. Mathematical formulas 

The presented model considers thermal processes in biological tissues, therefore 

the basis of the mathematical description is the Pennes equation [8]: 

    ρ λ ,p b b metc T T wc T T Q     ɺ  (1) 

where cp is the specific heat capacity, ρ is the density, λ is the thermal conductivity, 

T is the temperature and /T T t  ɺ  describes the change in the distribution of  

temperatures over time, w is the blood perfusion rate, cb , Tb represent the following 

parameters of the blood: the specific heat capacity and the temperature, while Q 

with subscript met denotes the internal heat sources connected with metabolism. 
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Cryopreservation also involves phase changes phenomena that need to be intro-

duced into the heat transfer equation (equation (1)) by an additional source function 

Qcr [11]: 

    ρ λ ,p cr b b metc Q T T wc T T Q        
ɺ  (2) 

where 

 ,cr sQ Lf ɺ  (3) 

while L is the latent heat and /s sf f t  ɺ  represents the local change in volume of 

the frozen state in the intermediate region. 

It is worth mentioning that during cryopreservation, three subdomains can be 

distinguished in the sample, depending on the physical state that it is presented in 

the given point. These are the following regions: natural, intermediate, and below 

freezing (melting) point. The function fs takes on a different value depending  

on the physical state considered in the subdomain. For the natural state and the 

state below the freezing (melting) point, this function is equal to 0 and 1. Whereas, 

in the intermediate region, the assumption is established that fs = fs (T), hence: 
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Let us introduce the above relationship (equation (4)) into the heat transfer 

equation (equation (2)): 

    d
ρ λ ,

d

s
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f
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and define the substitute thermal capacity CSTC as: 
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 (6) 

Knowing the general form of the heat transfer equation including phase trans-

formations, it is useful to develop the above formula using directed interval arith-

metic. The thermal conductivity (λ) and the volumetric specific heat (cv = cp · ρ) are 

introduced into the mathematical model as interval numbers. As a consequence,  

the results obtained are also in the form of intervals. The presence of interval  

numbers is implied in the equations by dashes over the variables. More information 

about rules of the directed interval arithmetic can be found in [15]. 

The sample is considered in a cylindrical system, hence the heat transfer  

equation is as follows: 
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 (7) 

where r, z are the geometric coordinates of the cylindrical coordinate system and t 

is the time. Please note that the thermophysical parameters and the internal heat 

source depend on the temperature. These variables are determined in different ways 

based on the physical state of the given subdomain. For the natural state and below 

the freezing (melting) point, constant values are assumed; whereas for the interme-

diate region, a linear function is established. They are defined from the relation-

ships [5]: 
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where T with the subscripts l and s represent the start and the end of the phase 

changes processes, as well as the subscripts N, in, f denote states: natural, interme-

diate, and below freezing (melting) point, respectively. 

The heat transfer equation is supplemented with an initial condition 0T T .  

The boundary conditions are also determined. At the boundary, where the thermal 

transfer occurs between the sample and the working fluid (Γ = Γ4: z = 0), the Robin 



A. Skorupa, A. Piasecka-Belkhayat 62 

condition is proposed: λ α ( , , ) ;bathT T r z t T     n  where n is the normal vector, 

α is natural convection heat transfer coefficient and Tbath is the temperature of the 

bath solution. At the other boundaries (Γ = Γ1: r = R; Γ = Γ2: r = 0, Γ = Γ3: z = H), 

the adiabatic condition is applied: λ 0;q T   n  where q  is the interval heat 

flux. 

2.2. Numerical model 

The finite difference method (FDM) was used to solve the heat transfer equa-

tion. At the beginning, simulation time and sample domain should be discretized.  

A fixed time grid with a step Δt = t f+1 – t f was established as follows: 

 0 1 2 1... ... .f f f Ft t t t t t           (12) 

On the other hand, a regular geometric grid was applied to the sample domain 

according to the concept of five-points star (Fig. 2). As can be seen, the boundary 

nodes do not coincide with the boundary line of the sample, but are 0.5h and 0.5k 

away from it (h and k mesh grid in the r- and z-direction). This ensures better  

approximation of boundary conditions of the 2nd and 3rd type [15]. 

For internal nodes (points (i, j), where i = 2, 3, ..., n – 1 and j = 2, 3, ..., m – 1;  

n and m are the number of nodes), the temperature distribution is determined  

according to the concept presented in [15].  

 

 

Fig. 2. Five-points star 

By substituting the corresponding differential quotients into the energy equation, 

the temperature at the given internal node (i, j) has the following form: 
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where: i = 2, 3, ..., n – 1 and j = 2, 3, ..., m – 1 and individual a corresponds to  

e = {(i, j + 1); (i, j – 1); (i + 1, j); (i – 1, j)}.  

In the above equation, the shape function Φ and the interval thermal resistance 

R  are introduced and is defined as: 
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 (14) 

where ri,j is the radial coordinate of the node (i, j). 

Meanwhile, the interval thermal resistances are of the form: 
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Similar derivations can be made for boundary nodes. For example, for Γ = Γ4:  

z = 0, the temperature at the node is defined as: 
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where j = 2, 3, ..., m – 1, individual a corresponds to e = {(i, j + 1); (i, j – 1);  

(i + 1, j)} and  
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However, for Γ = Γ3: z = H, the temperature can be calculated as:  
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where j = 2, 3, ..., m – 1 and individual a corresponds to e = {(i, j + 1); (i, j – 1);  

(i – 1, j)}. The temperatures in the other boundary nodes are determined analogically. 

3. Results 

Example calculations have been performed for a biological tissue considered  

in a cylindrical coordinate system. A two-dimensional (2D) axisymmetric region 

was analysed with the dimensions H = 0.02 m and R = 0.02 m.  

The tissue model includes blood vessels; therefore, blood parameters should be 

mentioned, such as the blood temperature Tb = 37°C, the specific heat capacity of the 

blood cb = 3770 J·kg-1·K–1 and the perfusion in the natural state wN = 0.53 kg·m–3·s–1. 

In the natural state, the sample is also characterized by an internal heat source  

related to metabolism Qmet N = 250 W·m–3. The limiting temperatures between the 

particular states are assumed to be Tl = –1°C and Ts = –8°C. Depending on these 

temperatures, the specific values of the interval thermophysical parameters are  

selected:  λ 0.494;0.546N   W·m–1·K–1 and 
6 63.42 10 ;3.78 10Nc       J·K–1·m–3 

for a natural state,  λ 1.197;1.323in   W·m–1·K–1 and  47.412;52.403inc   J·K–1·m–3 

for an intermediate region,  λ 1.9;2.1f   W·m–1·K–1 and  1.834;2.027fc   J·K–1·m–3 

for a state below freezing (melting) point. However, the latent heat for this system 

that is relevant in the intermediate region is equal to L = 3.3·108 J·m–3 [5]. 

Let us introduce the parameters related to the initial and boundary conditions: 

the initial temperature is established as T0 = 37°C, the natural convection heat 

transfer coefficient is equal to α = 525 W·m–2·K–1 [18]. It is also worth mentioning 

two methods of controlling the temperature of the bath solution. During the simula-

tion of slow freezing, the temperature decreased (increased) at a cooling rate equal 

to 1 K·min–1, in accordance with studies performed by Mazur [22]. On the other 

hand, cryopreservation by vitrification is also analysed, and the cooling rate is  

100 K·min–1 [3]. The cooling process is stopped, and the heating process begins 

when the temperature of bath solution is equal to Tbath = –196°C, which corre-

sponds to the temperature of the working fluid (liquid nitrogen). 

The calculations have been carried out by the finite difference method (FDM) 

applying the rules of directed interval arithmetic described, e.g. in [15]. The mesh 

steps are h = k = 0.0002 m (m = n = 100) and the time step is Δt = 0.005 s. 

In our research, two cases of cryopreservation have been investigated: slow 

freezing and vitrification. Figure 3 depicts the changes in the mean value of the  

interval temperature for the six selected points and the temperature of the bath  

solution (solid line) over time. The following point is considered: A(0.0001 m; 

0.0001 m), B(0.0009 m; 0.0001 m), C(0.0019 m; 0.0001 m), D(0.0029 m; 0.0001 m), 

E(0.0039 m; 0.0001 m), F(0.0049 m; 0.0001 m). Please note that for slow freezing, 

only the cooling process was computed due to the very long time of the simulation. 
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On the other hand, vitrification is much faster, therefore calculations were performed 

for cooling and heating. 

Comparing these graphs, significant differences in the mean values of the inter-

val temperature between different points occur, e.g. when the temperature of the 

bathing solution reaches its minimum value. 

 
a) b) 

     

Fig. 3. History of mean value of interval temperature over time for: a) slow freezing,  

b) vitrification 

As mentioned before, interval numbers have been introduced into the model, 

and the temperatures obtained are also intervals. Figure 4 presents the distribution 

of the interval temperature at the first 20 s of the simulation for the point B.  

In addition, Table 2 provides examples of interval temperatures for the point B  

in given time. It can be concluded that as the temperature decreases, the width of 

the intervals increases significantly, as well. 

 
a) b) 
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Fig. 4. History of interval temperature for point B for: a) slow freezing, b) vitrification 
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Table 2. Interval temperature in given moment of simulation for the point B 

Time t [s] Interval temperature T  [°C] 

 Slow freezing Vitrification 

0 [37.00; 37.00] [37.00; 37.00] 

10 [36.96; 36.97] [33.20; 34.77] 

20 [36.87; 36.93] [24.26; 29.84] 

30 [36.76; 36.88] [12.95; 24.53] 

40 [36.63;36.82] [3.80; 17.70] 

50 [36.50; 36.75] [0.28; 8.35] 

139.5 [–35.13; –36.14] [–142.12; –43.45] 

13980 [–195.83; –53.11] – 

 
In order to better illustrate the distribution of the mean values of the interval 

temperatures in the sample, Figure 5 for slow freezing and Figure 6 for vitrification 

have been prepared. Two distribution maps have been made for each cryopreserva-

tion method: in the middle of the freezing processes and when Tbath = –196°C. 

For slow freezing, in the middle of time simulation, the wide intermediate region 

exists. When the temperature of the bath solution is at its minimum, the entire area 

is below its freezing (melting) point. During vitrification, the intermediate region is 

much smaller than it is for slow freezing. It is also worth noting that in the moment 

when the temperature of bath solution reach the assumed minimum temperature,  

all three physical states occur in the domain under consideration. 

 
a) b) 

     

Fig. 5. Distribution of mean value of interval temperature for slow freezing method:  

a) t = 6990 s, Tbath = –79.5°C, b) t = 13980 s, Tbath = –196°C 
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a) b) 

     

Fig. 6. Distribution of mean value of interval temperature for the vitrification method:  

a) t = 70 s, Tbath = –79.67°C, b) t = 139.8 s, Tbath = –196°C 

4. Discussion and conclusions 

The paper presents a mathematical and numerical model of the cryopreservation 

process performed by two commonly used methods: slow freezing and vitrification. 

In particular, the analysis describes the heat transfer in a 2D sample considered in  

a cylindrical system. In addition, interval numbers were included in the model  

to introduce the nondeterministic character of the thermophysical parameters.  

As a result, calculations were conducted on the basis of directed interval arithmetic 

rules implemented into the FDM. 

When comparing the two methods in the context of the obtained results, the dif-

ference in simulation times certainly should be pointed out. It can be concluded 

that the temperature distribution for slow freezing is more regular and stabilized  

as a result of the time of the process. When the temperature of the bath reaches  

a defined minimum, the temperature in the entire area is below the freezing (melting) 

point. It can be assumed that it is timing that facilitates heat transport. In addition, 

as noted by Mazur [22], slow freezing with an adequate cooling rate allows osmotic 

transport of water from the intracellular space to the extracellular matrix. 

In contrast, by analysing the temperature distribution in the middle of the freez-

ing simulation, a considerable area covered by the intermediate region can be  

observed. This indicates a high risk of ice crystal formation. It is important to note 

that to assess the degree of potential sample damage, it is necessary to investigate 

mass transport phenomena and the degree of crystallization, as shown, e.g. in  

[7, 18, 23, 24]. 

The results are different for the vitrification method. When the temperature  

of the bath solution is equal to the minimum temperature of the working fluid, all 

three physical states are presented in the sample, which could suggest incomplete 

freezing of the sample. A similar situation occurs in the middle of a freezing simu-

lation. However, it must be remembered that the main idea of this method is to  
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obtain amorphous ice, where the solution solidifies (vitrifies) without forming ice 

crystals. Vitrification is conducted using a highly concentrated CPA solution, which 

can cause injury to the sample as a result of cytotoxicity. The impact of CPA is  

described, e.g., by the osmotic transport phenomenon presented in [7, 18]. 

In summary, when preparing a model for the thermal transfer during cryopres-

ervation, it is important to consider the phenomenon of phase transitions. There is  

a plan, in the future, to add also mass transfer and osmotic transport information  

to the model. 
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