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Abstract. This paper presents the numerical algorithms for evaluating the values of the  

left- and right-sided Riemann-Liouville fractional integrals using the linear and Akima  

cubic spline interpolations. Sample numerical calculations have been performed based on 

the derived algorithms. The results are presented in two tables. Knowledge of the closed 

analytical expressions for sample fractional integrals makes it possible to determine the 

numerical errors and the experimental rates of convergence for each derived algorithm. 
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1. Introduction  

The fractional calculus [1, 2] is treated as a generalization of the classical calcu-

lus, where the integrals and derivatives are of convolutional type and usually have 

power-type kernels. These fractional operators of non-integer orders can be used to 

describe the various processes with memory by using them in the differential-

integral equations. Applications of the fractional calculus in science and engineer-

ing are significant and continue to grow – selected works [3-7] can be mentioned.  

It is difficult to indicate all areas of science (without omitting any) where these  

operators can be used. There are different types of fractional integral and differential 

operators [1, 8] that are proposed by Riemann, Liouville, Weyl, Riesz, Grunwald, 

Letnikov, Marchaud and many other sciences, and new definitions of fractional  

operators appear all the time. 

In this work, the main focus is on the development and investigation of numeri-

cal methods for evaluating the values of left- and right-sided Riemann-Liouville 

fractional integrals. The left-sided fractional integral  
a

I y x
  and the right-sided 
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fractional integral  
b

I y x
  of order α > 0 of the given function y(x) on the interval 

[a, b] are defined in the following ways, respectively [1, 2, 8] 
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
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where Γ is the Gamma function. These fractional integral operators are used in 

many aspects of mathematics, especially to transform the fractional ordinary/partial 

differential equations into fractional integral equations. Hence, there is the need to 

develop appropriate numerical methods for approximate evaluation of the above 

fractional integrals, especially in cases where the integrand function has a compli-

cated form or the closed analytical forms of the fractional integrals have not been 

designated yet. Here, it is worth mentioning the book [9] written by Oldham and 

Spanier, in which the pioneering methods of approximating the fractional operators 

are described. Analysing the literature (e.g. [10-16]), it can be noticed that better 

(with high accuracy, fast convergence) approximation methods for the fractional 

integrals and derivatives are constantly being developed. 

Typically, two main steps need to be used to develop a numerical method of  

integration. The first step is to replace the integrand function by a piecewise-poly-

nomial interpolant on the grid of points, while the second step involves integration 

of the interpolant instead of the original function. Depending on the adopted type 

of polynomial, various numerical schemes with a specified accuracy are obtained. 

Hiroshi Akima published article [17] in 1970, in which he proposed a new inter- 

polation algorithm applicable in the successive intervals that are determined by the 

given points. This algorithm is based on the piecewise function composed of the set 

of polynomials, each of degree three, at most. In his method, the slope of the curve 

is locally determined at each given point, whereas each polynomial being a part of 

the interpolation curve between a pair of given points is determined by the coordi-

nates of points and the slopes at these points. H. Akima improved his own interpo-

lation method many times, e.g. [18]. In the current literature [19-21], his method is 

known as the Akima cubic spline interpolation. 

Section 2 of this work presents approximation algorithms, in particular, the intro- 

duction to the linear and cubic spline interpolations and the presentation of the 

Akima spline. The study of numerical evaluations of fractional integrals (1)-(2) by 

applying these spline interpolation methods for the integrand function is presented 

in Section 3. In Section 4, the quality of the proposed numerical algorithms on two 

examples by presenting numerical errors and determining the Experimental Order 

of Convergence (EOC) is tested. 
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2. Interpolation of integrand function using splines 

The integrand function y(x) should be sufficiently smooth on the considered  

interval [a, b]. The interval [a, b] is divided into N sub-intervals [xi, xi+1], for 

i = 0, 1, ..., N – 1, with the constant step length Δx, where the coordinates of N + 1 

nodal points are as follows 

  ,ix a i x x b a N       (3) 

Moreover, at this set of points, the values of function y(x) are determined as yi = 

= y(xi), for i = 0, 1, ..., N, and constitute the input data to the algorithms. 

Here, function y(x) is replaced by the interpolation formula which can be a poly- 

nomial of arbitrary degree or a spline. The high-degree polynomials may cause 

larger oscillations between interpolation points and may be a poor predictor of the 

interpolation function between points. Whereas the spline curves are usually at most 

third degree polynomials and are only piecewise continuous. The piecewise function 

s(x) can be expressed as 

    

   
   

   

0 0 1

1 1 2

1 1

, if ,

, if ,

, if ,N N N

s x x x x

s x x x x
y x s x

s x x x x 

 
 

  


 

 (4) 

where si(x), for i = 0, 1, ..., N – 1, are polynomials of degree p in each sub-interval as 

      , 1

0

, for ,
p

k

i k i i i i

k

s x c x x x x x 


    (5) 

where ck,i, for k = 0, 1, ..., p, are the coefficients of polynomial si(x) in i-th sub-

interval [xi, xi+1]. The important feature of the spline s(x) that interpolates the set of 

the data points (x0, y0), (x1, y1), ..., (xN, yN) is the relationship s(xi) = yi, for i = 0, 1, 

..., N, which means that the piecewise polynomials are linked in the set of points. 

The determination way of coefficients ck,i depends on the kind of spline interpola-

tion being used. 

2.1. Linear spline interpolation 

This kind of spline is mainly used to compare the obtained numerical results 

and is briefly presented. The linear spline used for numerical integration is known 

as the trapezoidal rule [22]. Here, the set of the data points is approximated by the 

piecewise first degree polynomial (linear function), between the adjacent data points 

(xi , yi) and (xi+1, yi+1), for i = 0, 1, ..., N  1. The first degree polynomial (p = 1) in i-th 

sub-interval is constructed as 
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        , 0, 1, 1

0

, for ,
p

k

i k i i i i i i i

k

s x c x x c c x x x x x 


        (6) 

where the polynomial coefficients have the forms 

 
0,

1
1,

i i

i i
i

c y

y y
c

x









  (7) 

2.2. Akima cubic spline interpolation 

The cubic splines produce a curve that appears to be seamless and has smooth 

characteristics. A piecewise continuous curve passes through each of the data 

points (xi, yi), for i = 0, 1, ..., N, wherein N  4, in the given order and the separate 

polynomial of third degree (p = 3) (so-called the cubic polynomial segment) in 

each sub-interval has own set of coefficients, i.e. 

        2 3

0, 1, 2, 3,i i i i i i i is x c c x x c x x c x x        (8) 

where x  [xi, xi+1], for i = 0, 1, ..., N – 1. These four coefficients c0,i, c1,i, c2,i and c3,i 

for i-th polynomial, in each of the N sub-intervals should be determined, and hence, 

in order to define the whole spline, a total of 4N independent dependencies im-

posed on the spline are required. 

The Akima interpolation spline [19, 21] needs only be once continuously differ-

entiable in contrast to the natural cubic spline that is constructed to be twice con-

tinuously differentiable everywhere. The Akima spline in the selected sub-interval 

is built on the basis of the given values of function y(x) and its first derivatives 

(slopes) at the ends of the sub-interval. In order to find the coefficients of the Aki-

ma spline c0,i, c1,i, c2,i and c3,i, for i = 0, 1, ..., N – 1, in Eq. (8), first, the slopes of the 

line segment in each sub-interval [xi, xi+1], for i = 0, 1, ..., N – 1, are calculated as 

 1i i
i

y y
m

x

 



  (9) 

and next, the spline slopes wi are determined on the basis of values of mi using 

formula 
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where 
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 (11) 

The Akima spline must satisfy four conditions of continuity of the spline  

function together with its first derivative: si(xi) = yi, si(xi+1) = yi+1, is(xi) = wi  and  

is(xi+1) = wi+1. Hence, the final forms of the coefficients in Eq. (8) are as follows: 
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  (12) 

One can note that in the case of the Akima spline, no linear system of equations 

must be solved to determine these above coefficients, and an essential advantage is 

that this kind of spline requires relatively small computational effort. This spline  

is based on the local interpolation by the polynomial of third degree, meaning that 

the polynomial coefficients in the inner sub-interval [xi, xi+1] depend on the values 

of yi−2 , yi−1 , yi , yi+1 , yi+2 , yi+3 only, and generally, no fewer than 5 points are needed 

to construct this spline. Here, it is possible to determine parts of the spline function 

without knowing all the data points (xi , yi), for i = 0, 1, ..., N, and the variation/ 

/perturbation of any data point only has an effect on the spline coefficients in its 

immediate neighbourhood. The interpolation error in the inner sub-intervals has 

order O((Δx)2) [21]. 

3. Numerical fractional integration 

Once the form of the spline is known, then the integrand function y(x) is replaced 

by the spline s(x) and is integrated analytically at each sub-interval. So, the approx-

imate values of the left- and right-sided fractional integrals (1)-(2) of function y(x) 

are calculated as 
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These values are determined in the set of data points x  {xM}, M = 1, ..., N for  

integral (1), and M = 0, ..., N – 1 for integral (2), respectively, in the following ways 
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The particular integrals 
, , ,k i M

a
J 


 and 

, , ,k i M
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
, for k = 0, 1, ..., 3, with regard to data 

point xM in i-th sub-interval, are computed analytically. In the case of the first one, 

they are as follows 
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for i < M, where 
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While, in the case of the second one, the integrals 
, , ,k i M

b
J 


 take the following ana- 

lytical forms 
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for i  M, where 
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4. Examples of computations 

The correctness of the proposed numerical schemes can be verified based on 

sample calculations and their analysis. The important feature of numerical integra-

tion method is the determination of the Experimental Order of Convergence (EOC) 

[11, 15] for the developed scheme. If the exact solutions of the fractional integrals 

are known, then the computational error of the numerical integration scheme  

obtained on the size grid N is determined by the formula 

  N Na
err I y x

     (21) 

where ΨN is the numerical value of  
a

I y x


 and is simultaneously the exact value 

of  
a

I s x
  at the node point xM . Similarly, the errN can be calculated for the right- 

-sided fractional integral. Knowledge of the error values calculated for the size grid 

N and N/2 allows one to determine the EOC in the form 

 
/2

2log
N

N

N

err
EOC

err
   (22) 

which should be computed over a range of different grid sizes.  
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Example 1  

In this example, let’s consider the integrand function y(x) that is the seventh-

degree polynomial in the form 

   7 6 5 4 3 22 14 17 50 66 84 50 100y x x x x x x x x         (23) 

in the interval [a, b], for a = −1 and b = 3. For the assumed interval endpoints, the 

values of function y(x) and its derivatives are the following: y(a) = 49, y(b) = 61, 

y′(a) = 3, y′(b) = −157, y′′(a) = −16, y′′(b) = −384. For polynomial functions, one 

can easily find the analytical forms of the left- and right-sided fractional integrals 

of order α > 0. For this purpose, function y(x) must be transformed to contain the 

expressions (x − a) and (b − x), hence one obtains 

 
           
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
 (24) 
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 
 (25) 

Then we can directly apply the properties of the left- and right-sided fractional in-

tegration of the power functions (x − a) and (b − x), for  > −1 and α > 0 [1, 2] 

        ,
a b

I x a x a I b x b x 
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where    1 1

          , in particular Γ(k) = (k − 1)!, for k = 1, 2, ... . 

The analytical forms of both fractional integrals for function (23) (for a = −1 

and b = 3, respectively) are expressed by the formulas 
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  (27) 
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  (28) 

The numerical values of  
1 3x

I y x 


 and  

13 x
I y x




 obtained for two derived 

methods for different values of α and N are calculated and investigated. In Table 1, 
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the numerical errors errN (21) and the EOC (22) for the sets of α  {0.4, 0.7, 1.0, 1.4, 

1.7, 2.0, 2.4} and N = 100, 200, 400, 800, 1600, 3200, 6400 are shown. The numerical 

errors errN are determined on the basis of the analytical values: 
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It should be noted that    1.0 1.0

3 11 3x x
I y x I y x 

 
 , which corresponds to the classical 

integration of function on the same interval [a,b]. 

Example 2 

Here, the nonlinear integrand function of the form 

  
1 1

3 1 1
2exp exp

5
1

2 2
y x x

x
xI x

x
               
     

 (29) 

is considered. The function I1(.) is the modified Bessel function of the first kind of 

order 1. The approximated values of the left-sided fractional integral  
10 .5x

I y x


  

are calculated. For x = a  0, the second term of (29) takes the value 0.  

We refer to the following properties [1, 23] and we recall 
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  (30) 

where E1,1+α(.) is a two-parameter Mittag-Leffler function, and c is any constant. 



Numerical approximation of the Riemann-Liouville fractional integrals using the Akima spline interpolation 39

Table 1. Results related to Example 1 

 N 

left-sided fractional integral right-sided fractional integral 

linear spline Akima spline linear spline Akima spline 

errN EOC errN EOC errN EOC errN EOC 

0.4 

100 4.093e-02 – 6.873e-03 – –9.281e-04 – 1.712e-04 – 

200 1.050e-02 1.963 1.288e-03 2.416 –2.004e-04 2.211 4.526e-05 1.919 

400 2.676e-03 1.972 2.424e-04 2.410 –4.582e-05 2.129 9.887e-06 2.195 

800 6.790e-04 1.979 4.574e-05 2.406 –1.083e-05 2.081 2.026e-06 2.287 

1600 1.716e-04 1.984 8.646e-06 2.403 –2.608e-06 2.054 3.774e-07 2.425 

3200 4.326e-05 1.988 1.636e-06 2.402 –6.349e-07 2.038 7.100e-08 2.410 

6400 1.088e-05 1.991 3.097e-07 2.401 –1.557e-07 2.028 1.335e-08 2.411 

0.7 

100 3.305e-02 – 3.006e-03 – 7.901e-03 – 5.115e-04 – 

200 8.308e-03 1.992 4.591e-04 2.711 1.984e-03 1.994 7.210e-05 2.827 

400 2.085e-03 1.995 7.024e-05 2.709 4.968e-04 1.997 1.003e-05 2.846 

800 5.223e-04 1.997 1.076e-05 2.706 1.243e-04 1.999 1.391e-06 2.850 

1600 1.308e-04 1.998 1.652e-06 2.704 3.109e-05 1.999 1.888e-07 2.881 

3200 3.272e-05 1.999 2.538e-07 2.703 7.773e-06 2.000 2.584e-08 2.869 

6400 8.183e-06 1.999 3.901e-08 2.702 1.943e-06 2.000 3.559e-09 2.860 

1.0 

100 2.133e-02 – 1.048e-03 – 2.133e-02 – 1.048e-03 – 

200 5.333e-03 2.000 1.322e-04 2.987 5.333e-03 2.000 1.322e-04 2.987 

400 1.333e-03 2.000 1.659e-05 2.994 1.333e-03 2.000 1.659e-05 2.994 

800 3.333e-04 2.000 2.079e-06 2.997 3.333e-04 2.000 2.079e-06 2.997 

1600 8.333e-05 2.000 2.601e-07 2.998 8.333e-05 2.000 2.601e-07 2.998 

3200 2.083e-05 2.000 3.253e-08 2.999 2.083e-05 2.000 3.253e-08 2.999 

6400 5.208e-06 2.000 4.068e-09 3.000 5.208e-06 2.000 4.068e-09 3.000 

1.4 

100 8.939e-03 – 2.097e-04 – 4.385e-02 – 2.072e-03 – 

200 2.234e-03 2.001 2.471e-05 3.085 1.096e-02 2.000 2.561e-04 3.017 

400 5.583e-04 2.000 2.825e-06 3.129 2.740e-03 2.000 3.176e-05 3.011 

800 1.396e-04 2.000 3.187e-07 3.148 6.850e-04 2.000 3.951e-06 3.007 

1600 3.489e-05 2.000 3.592e-08 3.150 1.712e-04 2.000 4.926e-07 3.004 

3200 8.722e-06 2.000 4.072e-09 3.141 4.281e-05 2.000 6.147e-08 3.002 

6400 2.181e-06 2.000 4.664e-10 3.126 1.070e-05 2.000 7.677e-09 3.001 

1.7 

100 3.239e-03 – 4.416e-05 – 6.353e-02 – 3.062e-03 – 

200 8.113e-04 1.997 1.091e-05 2.017 1.588e-02 2.000 3.779e-04 3.019 

400 2.029e-04 1.999 1.700e-06 2.683 3.970e-03 2.000 4.687e-05 3.011 

800 5.073e-05 2.000 2.318e-07 2.875 9.925e-04 2.000 5.835e-06 3.006 

1600 1.268e-05 2.000 2.998e-08 2.951 2.481e-04 2.000 7.278e-07 3.003 

3200 3.171e-06 2.000 3.795e-09 2.982 6.203e-05 2.000 9.087e-08 3.002 

6400 7.927e-07 2.000 4.758e-10 2.995 1.551e-05 2.000 1.135e-08 3.001 

2.0 

100 –1.773e–05 – –1.552e-05 – 8.534e-02 – 4.207e-03 – 

200 –1.109e-06 3.999 9.195e-06  0.755 2.133e-02 2.000 5.195e-04 3.018 

400 –6.933e-08 4.000 1.892e-06  2.281 5.333e-03 2.000 6.448e-05 3.010 

800 –4.333e-09 4.000 2.845e-07  2.734 1.333e-03 2.000 8.031e-06 3.005 

1600 –2.708e-10 4.000 3.859e-08  2.882 3.333e-04 2.000 1.002e-06 3.003 

3200 –1.693e-11 4.000 5.015e-09  2.944 8.333e-05 2.000 1.251e-07 3.001 

6400 –1.058e-12 4.000 6.390e-10  2.973 2.083e-05 2.000 1.563e-08 3.001 

2.4 

100 –2.347e-03 – –5.417e-05 – 1.169e-01 – 5.880e-03 – 

200 –5.815e-04 2.013 1.083e-05  2.323 2.923e-02 2.000 7.268e-04 3.016 

400 –1.450e-04 2.003 2.523e-06  2.102 7.307e-03 2.000 9.030e-05 3.009 

800 –3.624e-05 2.001 3.907e-07  2.691 1.827e-03 2.000 1.125e-05 3.005 

1600 –9.059e-06 2.000 5.359e-08  2.866 4.567e-04 2.000 1.404e-06 3.002 

3200 –2.265e-06 2.000 6.998e-09  2.937 1.142e-04 2.000 1.754e-07 3.001 

6400 –5.662e-07 2.000 8.936e-10  2.969 2.854e-05 2.000 2.191e-08 3.001 
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Table 2. Results related to Example 2 

 N 
linear spline Akima spline 

errN EOC errN EOC 

0.4 

100 –1.589e-05 – –1.682e-06 – 

200 –4.033e-06 1.978 –3.046e-07 2.465 

400 –1.020e-06 1.984 –5.590e-08 2.446 

800 –2.571e-07 1.988 –1.036e-08 2.431 

1600 –6.469e-08 1.991 –1.935e-09 2.421 

3200 –1.625e-08 1.993 –3.631e-10 2.414 

6400 –4.078e-09 1.995 –6.835e-11 2.409 

0.7 

100 –2.470e-05 – –1.138e-06 – 

200 –6.187e-06 1.997 –1.631e-07 2.803 

400 –1.549e-06 1.998 –2.355e-08 2.792 

800 –3.874e-07 1.999 –3.428e-09 2.780 

1600 –9.690e-08 1.999 –5.031e-10 2.769 

3200 –2.423e-08 2.000 –7.435e-11 2.758 

6400 –6.059e-09 2.000 –1.106e-11 2.749 

1.0 

100 –3.176e-05 – –8.750e-07 – 

200 –7.939e-06 2.000 –1.096e-07 2.997 

400 –1.985e-06 2.000 –1.371e-08 2.999 

800 –4.962e-07 2.000 –1.715e-09 2.999 

1600 –1.240e-07 2.000 –2.144e-10 3.000 

3200 –3.101e-08 2.000 –2.680e-11 3.000 

6400 –7.753e-09 2.000 –3.350e-12 3.000 

1.4 

100 –4.086e-05 – –9.016e-07 – 

200 –1.021e-05 2.000 –1.100e-07 3.035 

400 –2.554e-06 2.000 –1.355e-08 3.022 

800 –6.384e-07 2.000 –1.681e-09 3.011 

1600 –1.596e-07 2.000 –2.090e-10 3.008 

3200 –3.990e-08 2.000 –2.602e-11 3.006 

6400 –9.975e-09 2.000 –3.242e-12 3.004 

1.7 

100 –5.030e-05 – –9.840e-07 – 

200 –1.257e-05 2.000 –1.194e-07 3.043 

400 –3.143e-06 2.000 –1.467e-08 3.024 

800 –7.859e-07 2.000 –1.819e-09 3.012 

1600 –1.965e-07 2.000 –2.270e-10 3.003 

3200 –4.912e-08 2.000 –2.835e-11 3.001 

6400 –1.228e-08 2.000 –3.543e-12 3.000 

2.0 

100 –6.542e-05 – –1.113e-06 – 

200 –1.636e-05 2.000 –1.272e-07 3.129 

400 –4.089e-06 2.000 –1.523e-08 3.063 

800 –1.022e-06 2.000 –1.867e-09 3.028 

1600 –2.556e-07 2.000 –2.327e-10 3.004 

3200 –6.389e-08 2.000 –2.907e-11 3.001 

6400 –1.597e-08 2.000 –3.633e-12 3.000 

2.4 

100 –1.012e-04 – –1.529e-06 – 

200 –2.531e-05 2.000 –1.402e-07 3.447 

400 –6.327e-06 2.000 –1.478e-08 3.245 

800 –1.582e-06 2.000 –1.790e-09 3.046 

1600 –3.955e-07 2.000 –2.212e-10 3.016 

3200 –9.887e-08 2.000 –2.755e-11 3.005 

6400 –2.472e-08 2.000 –3.440e-12 3.001 
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The analytic form of the left-sided fractional integral of function (29) is as follows 

  
 
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    
         

      
 (31) 

and for the sets of α  {0.4, 0.7, 1.0, 1.4, 1.7, 2.0, 2.4} for x = 1.5, the analytical 

values are equal to 
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

 

In Table 2, the errors errN and the EOC values for numerical values of 

 
10 .5x

I y x



 obtained on the grid sizes N = 100, 200, 400, 800, 1600, 3200, 6400 

for the above the sets of α are presented. 

5. Conclusion 

The numerical integration formulas for calculation of the left- and right-sided 

Riemann-Liouville fractional integrals, that are based on the interpolation of the inte- 

grand function using the Akima cubic spline, have been derived. Also, the integration 

method using the linear spline has been added to this work, in order to compare  

the obtained computational results by the Akima cubic splines method with this 

method. 

Analysis of the results presented in tables: the numerical errors tend to zero as the 

grid size N increases for each derived numerical integration method; the calculated 

numerical values of the fractional integrals have good agreement with the known 

analytical solutions. It can be noticed that as the number N increases, the EOC  

values stabilize and reach the specified constant values. For the method that uses 

the linear spline, the EOC = 2 for α > 0 is obtained. Whereas, for the Akima spline, 

the values of the EOC are as follows: EOC = 2 + α for α < 1 and EOC = 3 for α  1. 

Hence, it can be concluded that the method using the linear spline gives worse  

results than the method using the Akima cubic spline. 

Usually, for many kinds of cubic splines, it is necessary to solve a system of 

linear equations to determine the spline coefficients and from a computational 

point of view, it can be computationally time consuming. This problem does not 

occur in the case of the Akima cubic spline (and for the linear spline, of course) 
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where the coefficients of spline segments are determined locally. Additionally,  

the Akima interpolation algorithm can be easily parallelized. 

In conclusion, the obtained numerical results for the derived integration method 

that uses the Akima cubic spline gives higher values of the EOC than for the method 

that uses the linear spline. I think that the efficiency and the applicability of the  

derived numerical algorithm for the fractional integration has been confirmed.  

In the future, I plan to apply this method to the fractional derivatives and improve 

the obtained numerical methods through more accurate interpolations of the integrand 

function. 
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