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Abstract. Lie symmetry analysis is considered as one of the most powerful techniques
that has been used for analyzing and extracting various types of solutions to partial
differential equations.  Conservation laws reflect important aspects of the behavior
and properties of physical systems. This paper focuses on the investigation of the
(1 + 1)-dimensional time-fractional modified Benjamin-Bona-Mahony equation (mnBBM)
incorporating Riemann-Liouville derivatives (RLD). Through the application of Lie sym-
metry analysis, the study explores similarity reductions and transforms the problem into a
nonlinear ordinary differential equation with fractional order. A power series solution is
obtained using the Erdelyi-Kober fractional operator, and the convergence of the solutions
is analyzed. Furthermore, novel conservation laws for the time-fractional mBBM equation
are established. The findings of the current work contribute to a deeper understanding of the
dynamics of this fractional evolution equation and provide valuable insights into its behavior.
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1. Introduction

Nowadays, fractional differential equations represent various physical applica-
tions and phenomena in nature and sciences [1,2]. There are many schemes being
developed to find numerical and analytical solutions to fractional problems, such
as the collocation methods, finite-difference methods, and reproducing kernel
approaches [3-5], different forms of fractional power series [6, 7], homotopy per-
turbation technique and its updates [8], combined Laplace transform and fractional
power series [9, 10], and many others.

For decades, Lie symmetry analysis [11-14] has been considered as one of the
most powerful techniques that has been used for analyzing and extracting various
types of solutions to partial differential equations. Lie-symmetry analysis guarantees
the existence of analytic solutions or convert partial differential equations to ordinary
differential equations that can be solved. Moreover, symmetry methods can iden-
tify special transformations that map a given differential equation to a simpler one
with known solutions. It provides a powerful framework for studying symmetries,
conservation laws, and the dynamics of various physical, chemistry, and engineering
phenomena.

Conservation laws are rooted in the fundamental principles of physics and math-
ematics. They reflect important aspects of the behavior and properties of physical
systems, such as the conservation of energy, momentum, mass, charge, and angular
momentum. These principles provide a foundation for understanding the underlying
dynamics and governing equations of various phenomena.

Recently, there has been interest in exploring conservation laws to fractional
physical models via its new Lie-symmetry by considering different new linear
combination to prove the existence and uniqueness of solutions for fractional
partial differential [15].

In this research article, our focus is on exploring novel solutions to the nonlinear
time-fractional modified Benjamin-Bona-Mahony (mBBM) equation using Lie sym-
metry and conservation laws. The equation is considered in the context of Riemann-
-Liouville derivatives (RLD). By formulating the fractional mBBM equation in vector
equation form, we aim to uncover new solutions that exhibit intriguing properties and
shed light on the dynamics of this nonlinear fractional equation, which is given as

dh h
DPh+ A K" a—/lz o1 =
where A1, A, are real numbers and represent the nonlinearity and dispersion parame-
ters, respectively. D} is the RLD of order @ > 0 which is given by [16]

0, (1

Qtnh(x,t), W= n,
t
Di*hix,1) = { L [y B 2)
I'(n—w) af". (r—s) h(x,s)ds, 0<n—1<w<n,
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The time-fractional modified Benjamin-Bona-Mahony equation [17-19] is a sim-
ulation of the Korteweg-de Vries (KdV) and describes the motion of shallow waves
propagation with equal width to all wave amplitudes. It has been generalized into
a time-fractional mode, which is a generalization of the classical time-derivative.

2. The Lie point symmetry representation

This section is devoted to presenting some concepts which are related to the Lie
symmetry analysis. Let us start with the subordinate FPDE which is given by

D®h—H (x,t,h,hy, hyy,...) = 0,0 > 0, 3)

where A(x,t) is the variable function that depends on ¢ and x, and H is a relation
among other terms of the FPDE.

It is well known that the one-parameter (f3) Lie group is given by the transforma-
tion

=1+ B.71(x,1,h) + O(B?), X =x+ .1 (x,1,h) + O(B?),
B =h+B. T (x,1,h) +0(B?), DPh* =DCh+B.7T0 (x,1,h) +0(B?),

oh* 5 0K . )

5 =BT +O(BY), 55 = he + BT (k1,1 + O(F%), (4
where 1 and 7, 7, are the infinitesimals of the transformations for independent
and dependent variables, simultaneously, and < 1 is Lie group parameter. Hence,

the explicit expressions of 1*, T, 7%, T, and T are given as

T =Dy(T) = hDy(12) = Dx(11), T =Di(7) = Dy (12) — 1Dy (T1),
T = Dx(-It) - ]’lxth(T2) - htth(Tl)v ™= Dx(-[x) - hxxDx(TZ) - hXtD«"(Tl)’
-[xxt = Dx(-[ﬂ) - hxxxDx(T2) - hxxth(Tl)v (5)
d

0
where D, is the total derivative that is defined by D, = e + hxa—.

The corresponding Lie algebra of symmetries is formed by a collection of the
following vector fields:

XZ‘Fz(X,t,h)iC-FTl(X,Z,h)jt+_|(X,l7h)aah- 6)

On the infinitesimal invariance criterion, it is easy to obtain that

Pr®3)X[V] =0 when V =0, (7
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where V.= D®h— H (x,t,h, hy, hy, . ..). The prolongation operator Pri®3)X of the Lie
group takes the form

) _ 9 9
(w,3) 0
ProsX =X+Toga, + Vg 1 g

®)

Thus, when 7 = 0, the invariance condition leads to ) (x,7,/) = 0, which gives that
the @’ extended infinitesimal associated with RLD can be performed as follows:

10, = DP(T) + ©DP (hy) — DP(tahy) + DP (Dy(11)h) — DT (11h) + 1 DPH (h),
©))
where D is the total fractional derivative operator. Hence, the generalized Leibnitz
rule gives that

. _1\n—1 n—
DO(g(1) (1) = Y. (i’)ng(t)D,wn £0) - (“’) _ (F(;)Jr 1;1)“F((1 _w";)_

n=0 n
This leads, by employing the Leibnitz rule, to
) —n - w n -n
T =P ()00, (0P - ¥ () orene o)~ X (9 )orene o
n=1 n=1
Notice that the chain rule for differentiating (¢ oJ)(¢) = ¢ (J(z)) is given by
n k
o \1 , d" o d()
— |=J)] — t .
dt”¢ Zz<n+l> il [(J( ) } dJk

k=0r=0

d}’l

Hence, we deduce that

8“’h awh 8“"!;,

i <n> 8“"!th (=)D () + i,

n=0
where [l is given by

= LEER()C) Omtra it e

=2k=2r=0

Therefore, the " extended infinitesimal of (9) reduces to the formula

2?7 d°h 9“7,
atw +(-I th(Tl))a o —h or®

R [(0) 52,2 oo £ (8o

n=1
(10)

To =
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We point out that a function 2 = 0(x,t) is called an invariant surface if

+(x,t,h) = 9 6 =0.

+Tl(x7t7h)a oh

X60=0& rz(x,t,h)i 3

ox

Theorem 1. [20] A function h = 0(x,t) is an invariant solution to (3) if and only if
it is an invariant surface that satisfies (4).

3. The LS and reductions

In this section, we establish the reduction equations by deriving the characteristic
formulas of vector fields. Precisely, we reduce the time-fractional RLD given in (2) to
a FDE that is supported by Erdelyi-Kober FDO, and then solve it. In fact, we assume
that the Equation (5) is invariant under one parameter conversion of (6). Hence, the
following subordinate conversed equation

oh* d*h*
DPR + A (B)" — —A =—=— =0 11
e ey r T ah
is obtained. Now substitute (4) in (11) to get the subordinate symmetry determining
equation
T+ AR TR Thy) = 22T =0, (12)
Hence, by (10) and (11), we get

2°7 a°h 997, o
OZW-'_(-[ (DD;(Tl))aw—h 370 +IJ—”;1

Ly K“’) a;;h— (n+1>Dnﬂ( )] DO (R) 4+ A" (T he(Th = 12,)

=0
— ()1, — hety, — hehyy,) 4 A ™ e — Ao (T + (2 Tan — o, )

+ (T — 272”) — (T —272,,) () + (T — T2, — T, — 71, )P

+ (270 — T2 — T ) e + (200 — 412, — 271, ) hichiy + (oo — T1,0 ) e

+ (T — 2% — )y + (T — T2y, — T,y ) () hy — 372, By

— 31, (1) hyx — 372, (he) by — T, (Be)* — 271, hehye — 471, ey

- (Tlhhh + 211/1/1x)(ht)2hx — Tl (ht)zhxx — Tl — 271, hchys — T1, hochig

— T, ey — Tt ue — e (T1, + I T1,) — B (T2, + i To,,) — (272, — T1, ) el

4+ (2T — T2y, — 271, Vol — A1, Bihihyy — 11, () — T Bacher — T, (Be)*her).

(13)

(&) orzipe-+in)
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Set each power of derivatives to zero, and then solve it, we get the following subor-
dinate infinitesimals:

7= (ow—1)mxci+c, T =2mtc
and T=—(@+1)hcy,

where c1, ¢ are free constants. Notice that the Lie algebra of infinitesimal symmetries
of (1) is given by

X) = 9 and Xo = (0 — l)mxi —|—2mt2 —(0+ l)hi

dx dx ot oh’
The reduction equations related to our work are the following:
d dt dh
Case 1: Express the characteristic equation for X; symbolically as Tx -0

then we obtain that r = z and h = y(z), where y(z) is any function that satisfies
D{y(z) = 0. Hence, the group invariant solution associated with X; is of the form
hy = kit®~! with a free variable k;.

. . . d
Case 2: Express the characteristic equation for X, symbolically as e S

(@ —1)mx
d dh we get t 2° and t =5 . Therefore, by the symmetr
= =, X = m
2mt  —(w+1)h et = “@= yHesy Y

of X5, we deduce that the group invariant solution as

1o —(o+1)
z=xt?2 and h=1t"2 Q(z). (14)

The function Q(z) is to be determined later through the power series expansion,
and thus is to be used to identify the solution & = h(x,?).

Theorem 2. The transformation given in (14) reduces the governing equation into
the following subordinate nonlinear FODE:

((D+ 1) —;im(l — (D) Q//(Z)

~10"(2) =0

—0(2m+1)—1 ® ,
(Pli gt Q) (D) + M0E)"Q () + 1o

where Pg "% is the Erdélyi-Kober FDO given by

o n—1 1 d +a,n—ao ) N’
(PE*1) @) ,Ho d—)(k,% ’ f><Z>v"={ (11+[a], 3§N

1 7 —(fta 1 o
(k5 1)() = r(ooo/ (w9 ta)) -1, @0
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PROOF Let w € (n—1,n) withn=1,2,3,.... Then, by the similarity transformation
of (11), the RLD turns into
t
2% J" 1 —(@+1) —(o£1)
—_ — 2m 2m r— n_w_ld 15
5 = 9 | T o) 0/ Qs 57 ) (1 —s)" @ ds (15)

t
Let r = —, then, we have
Ky

t

o°h  o" 1 R TN R, R o S
e B (S 1) 2m t 2
ot® It F(n—w)/[s (s ’ Qo ot )ds

an tn 0+— —(otl) =

2m 1 —(0+1) P o-1
_ atn / n—0+1+—5- ) (I"— l)n 0} lQ <Zl"ml >d}"
1

_ 0T o+ =QHL [ 14 e
= Bt" (k 5 ) (z)] .

Take ¢ € C'(0,00) and 7 = X2, we get that

d (1= 0\ o, -0 d
0@ =0 (1527 0 = 525 0,

Hence, the following subordinate is generated:

n —(o —(o+1)
aatn |:tna)+<2,:—l) (klj (2;;] M wQ) (Z):|
o—1
a1 7o (et 1+—(a)+1)7 _
= atn—l |:al' (tn o+ 2m <k2] M wQ) (Z)):|
o1 —(0+1) —(w+1) 1-w 0 1+-25 o
g l’n_w+ 2m — Q@ R k 2m .
a1 [ (n T T2 Zaz> ( oo Q> (Z)]
Repeating the same argument n — 1 times, one acquires
" R T
I P -+ k .
| (K25 0) @
gt —(0+1 -0 0 (ot
e S | (1o S e 152 (K500 ).

=1 -1

which can be simplified, by Erdélyi-Kober FDO, into

a%h ~(wt1) IR IR —o@m+1)-1 14 —eCmi-1
Era =0T P, Q)(@)=t P, > Q) (2)

—1 -1

By this, the proof is complete. n
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4. Explicit power series analysis

In this section, we discuss the explicit solution of the nonlinear FDEs by employ-
ing the power series technique [21]. It is clear that once we obtain the explicit solu-
tion of FDE, then we can get the power series solutions to FPDE (1). Consider the

subordinate expansion Q(z) Z a,Z". Then by simple calculations and comparing
=0
the coefficients we conclude that the explicit solution to (14) is represented in the

form:
0(z) =ao +a1z+azz2 +a3z3 + Zan+32"+3, (16)
n=1

where as and a3 for n > 1 are found as

—o(2m+1)—1
1 F(”izm ) (0+1)+2m(1 — o)

= A " 24
= r- e ao+ A1 (a0)" a1 +22, - a |,
—0(2m+1)—1 0—1
a = a
"B i D(n+2)(n+3) A r (2_ o+l _ n(w2—1)> n
n
n l| lm 2 lm 1
+)’1 Z Z Z Z _ll +1 almalm 11— lmalm 2= m—1"* ail_i2ain7il+l
i1=0ir= im—1=0i,=0
o+1)+2m(w—1
+7Lz(n+l)(n+2)( ) ( )an+2. (17)

2m

Therefore, for a free selection of ag, aj, as, the explicit power series solution
to(1)is

—(o+1) m(l-w)— (1) ) 2m(l1-o)—(w+1)
h(x,t) =apt™ 2 +ayxt +ax"t 2
—o(2m+1)—1
N F(72m +2 A (o) ay 424 2m(1— @)+ (0+1)
a 1 (a ay 2 an
re-gh U 2m
m
3 3m(1-w)—(w+1) I
X m m(n+3)(1-0)—(w+1)
X+ Y ap" P (18)

64,

n=1

S. The convergent analysis

The radius of convergence determines the range of values for which the series
converges and provides accurate approximations. Understanding the convergence
behavior and radius of convergence is essential for determining the applicability
and limitations of power series methods. In this section, we study the convergence
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of the explicit power series solution that we obtained in the previous section. In fact,
we have

2m

< P
’dn+3‘—[|12| F(Z—%_M)

. F(2+ —o(2m+1)-1 n(a)z—l)) "

2

im—2 Im—1

+ ’ll| Z Z Z Z |alm |alm 1— lm| ‘alm 2= lIm— 1‘ |ai1_i2|

i1=0i=0  ip—1=0i,=0
(0+1)+2m(w—1)
|an+2| .
im—2  Im—1

2m
n
< K <|Cln| + |an+2| + Z Z Z Z |alm Qi iy | -+ |ai1_i2| ain—i|+l ) )
i1=0i2=0  i,—1=0i,,=0

(19)

ailz—i1+1

+ |42

}.

where K = max{uil ;;1: (a)—l—l)-zim(m_l)‘

Set the power series S(z Zmnz with m; = |g;| for all i € {0,1,2,...}. Then,
n=0
we have

im—2  Im—1

Mui3 < K[mp +my.o+ Z Z Z Z mi,, | ‘mlm 1~ im

i1=0i,=0 i,,_1=0i,=0

.

o iy |

minfilJrl
Hence, we get that |a,| < m, and S(z) is the majorant series to Q(z). Therefore,

S(z) =mo+miz+m +msz + K Y myd" 7+ KY my 07"
n=0 n=0

Im—2  Im—1

o n I
—i—KZ Z Z Z Zmimmimfl_i’“”'mil—izmin,il+12n+3' (20)

n=0i;=0i,=0  i,_1=0i,=0

This means that the series S(z) possesses a positive radius of convergence, which
allows us to assume that the implicit functional equation with respect to z is repre-
sented in the form:

R(z,8) =S(z) —mo—myz— mz® —msz — KZmnz”+3 —-K Zmn+2zn+3
n=0 n=0

im—2  im—1

n
_KZ Z Z Z Zmlmmlm V=i e M =iy M, 11+1Z =0.

n=0i1=0i,=0 i,_1=0i,=0

Since R(z,S) is analytic in a neighborhood (0, mg) with R(0,mg) =0 and ;S R(0,mq) #

# 0, then, by the implicit function theorem [21], the convergence is satisfied.
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6. Conservation laws

Conservation laws are very important parts of the discussing the FPDEs. Actually,
they prove the existence and uniqueness of solutions, provide conserved quantities
for all the solutions and also explain the linearization. Let us establish the conser-
vation laws of the (1) regarding the formal Lagrangian and LPSs. Consider a vector
C = (C*,C") that admits the subordinate conservation equation

D.(C¥)+D,(C") =0,

where C* = C*(x,t,h,...) and C' = C'(x,t,h,...) are the conserved vectors for (1).
According to the conservation theorem in [22], we get that the formal Lagrangian
to (1) is given by

oh 3h
_ w m _
L =w(x,t) [D, h+ Ah B lziaxzat ,

where w(x,?) is a smooth function. Depending on the definition of Lagrangian,
we obtain the following action integral:

t

//L(x,t,h,w,D,“’,hx,hxx,hm)dxdt.
0Q

We point out that the Euler-Lagrange operator is given by

§ 0 .. 9 2 9
E_%J’_(Dl‘) aD?h+Dme+DXDXDtahxxr’

where (D®)" is the adjoint operator of D®, the Riemann-Liouville left-sided time-
fractional derivative given by

oDy =D} (o)
O f ) = o [ = (e
0

Now, consider the dependent variable © = ¥ (x,7) to get the subordinate result:

R+ Dy(1)) +Dy(1)] = Wi + Dy (C*)+ D, (C"),

oh
where I represents the identity operator, and R* is given by
d d d d

* i 2 _ () X XXt
R = n g ot Vopen Y o Y an
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Moreover, W is the Lie characteristic function defined as:
W="- Tzhx - Tlht.

Apply the RLD to equation (1), the density component C' of conservation low is
given by:

= .Z 07
r _1Ykpo—1-k k n 7
C - Tlg—i_k;o( 1) Dt (W )Dt 8(0D“’h) ( 1) J(WS7DZ 8(0D‘°h))
where J is defined by J(f, ¢) / (1 T’XT) W) e,
The other component C* is given by
07 0 0L 0% 07
C'=n2+W <8h Dxahxx+DxD,ahm>+D (W)<8hm D,ahm>

A A Y
+Dth(Wv) <8h z> +DZ(W) (aht _Dxaht> .

We indicate here that W, represents different forms of the function W. Now, we
generate the components of the conservation laws for equation (1).

Case 1: For the case W| = —h,, we get that the t and x components of the conserved
vectors are:

C' =wDP N (—h) +J(=he,w,), C*=w(D®h) — Aahuw; — Aphywy + Aol owyy.

Case 2: For the case W» = —(w + 1)h— (@ — 1)mxh, — 2mth,, the t and x components
of the conserved vectors are

oh *h
AL P
ox dx2dt
+J(—(0+1)h— (0 — 1)mxh, — 2mth;,wy).

C' =2mtw |DPh+ A h" —I'""*((@+1)h— (0 — 1)mxh, — 2mth,)

C'=(—(o+1)h—(®—1)mxh, —2mth,) (A h"w — Aowy ) + 22D (Wa)w,
+ )QDt (Wz)wx — AQDXD[ (Wg)w.

7. Conclusions

In conclusion, this research has contributed to the understanding of the (1+1)-di-
mensional time-fractional modified Benjamin-Bona-Mahony equation equipped with
Riemann-Liouville derivatives. By utilizing the Erdelyi-Kober fractional operator,
we derived a power series solution and analyzed its convergence properties. Further-
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more, we established novel conservation laws for the equation. These findings
lay the groundwork for future studies that can explore higher-dimensional versions,
validate the obtained solution through numerical simulations, and investigate
additional conservation laws. Overall, this research enhances our understanding of
the dynamics of the time-fractional modified Benjamin-Bona-Mahony equation and
opens up possibilities for further exploration in this field.
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