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Abstract. In recent years, fractional calculus (FC) has filled in a hole in traditional
calculus in terms of the effect of memory, which lets us know things about the past and
present and guess what will happen in the future. It is very important to have this function,
especially when studying biological models and integral equations. This paper introduces
developed mathematical strategies for understanding a direct arrangement of fractional
integro-differential equations (FIDEs). We have presented the least squares procedure and
the Legendre strategy for discussing FIDEs. We have given the form of the Caputo concept
fractional order operator and the properties. We have presented the properties of the shifted
Legendre polynomials. We have shown the steps of the technique to display the solution.
Some test examples are given to exhibit the precision and relevance of the introduced
strategies. Mathematical outcomes show that this methodology is a comparison between
the exact solution and the methods suggested. To show the theoretical results gained, the
simulation of suggested strategies is given in eye-catching figures and tables. Program
Mathematica 12 was used to get all of the results from the techniques that were shown.
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1. Introduction

Numerous studies have been carried out with FC to simulate real-world issues
and to obtain a deeper comprehension of the influence of genetic characteristics and
memory on certain epidemiological models [1, 2]. Integro-differential and differen-
tial conditions of fractional requests emerge in numerous physical and design issues,
for example, liquid mechanics, viscoelasticity, dispersion cycles, science, etc. [1, 3].
Ahmed and Salh in [4], introduced a modified Taylor matrix approach for resolving
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linear integer fractional problems of the Volterra sort. Bhrawy and Alofi in [5],
presented the operational matrix of fractional integration for shifted Chebyshev poly-
nomials. Alquran in [6], introduced the incredible fractional Maclaurin series to
resolve many fractional mathematical issues that come up in physics and engineer-
ing. Khader et al. in [7], were proposed an effective numerical approach to calculate
the fractional diffusion equation. Pakchin and Mazraeh use a variant of He’s varia-
tional iteration approach in [8] to examine exact solutions for a few FIDEs with non-
local boundary conditions. Jaradat et al. in [9], presented an analytical simulation of
the synergy of proportionate time-delayed spatial-temporal memory indices. Zurigat
et al. examine ahomotopy analytic technique for fractional integro-differential equa-
tion systems in [10]. His homotopy perturbation approach, which Nadjafi and
Gorbani apply in [11], is a useful tool for resolving nonlinear integral and integro-
-differential equations. His homotopy perturbation approach for integro-differential
equation systems is described by Biazar et al. in [12]. The fractional differential trans-
form approach to solving FIDEs by Arikoglu and Ozkol is shown in [13]. Rawashdeh
used the collocation method in [14] to solve FIDEs numerically. Huang et al. use the
Taylor expansion approach in [15] to approximate the solution of FIDEs. The CAS
(Cosine and Sine) wavelets approach for solving fractional order nonlinear Fredholm
integro-differential equations was presented by Saeedi et al. in [16]. Maleknejad et al.
provided a numerical solution by block pulse functions for a system of second-kind
integral equations [17]. Alquran et al. in [18], introduced the use of residual power
series and Laplace transforms in combination to solve n-dimensional fractional non-
linear problems. According to Ali et al., [2], they found the exact and close solutions
for the fractional diffusive Predator-Prey model using the conformable Caputo. Bell
provides unique functions for engineers and scientists [19]. Fractional integrals and
derivative notions and applications are published by Samko et al. in [3]. Mahdy solves
FIDEs in [20] by use of numerical investigations. Amer et al. use the Hermite spectral
collocation method and the Sumudu transform method to solve FIDEs [21]. Mahdy
and Mohamed employed numerical research [22] to solve a set of linear FIDEs by
shifting Chebyshev polynomials and the least squares approach. Mahdy and Shwayye
in [23] discuss the numerical solution of FIDEs employing the shifted Laguerre poly-
nomials pseudo-spectral approach and the least squares method. In [24], Mohammed
applies the shifted Chebyshev polynomial and the least squares style to numerically
solve FIDEs. Mahdy et al. presented a computer strategy in [26] for resolving mixed
Volterra Fredholm integral equations in three dimensions. Mahdy et al. in [27] pro-
vided an algorithmic method for mixed integral equations with unique kernels at the
second kind. Lucas polynomials were used by Mahdy and Mohamed in [28] to esti-
mate their responses to Cauchy integral equations. Chelyshkov’s polynomials method
for solution 2-dim nonlinear Volterra integral equations of the first sort is described by
Mahdy et al. in [29]. A portion of these mathematical strategies is Adomian’s disinte-
gration strategy, variety cycle technique, homotopy investigation strategy, differential
change strategy, operational lattices, and nonstandard limited contrast in [10]. Frac-
tional differential equations (FDEs) are usually used to illustrate models in the realm
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of thermoelasticity, organic standards, and frameworks with a memory present in
a few physical occurrences. FDEs have been applied to demonstrate how flexible
frames and disease contamination can diminish reasonably in two phases, albeit more
slowly. Number requests are not as useful as FDEs when displaying intricate models
that include real Marvel.

This work focuses on the numerical solution of the FIDEs that follows:

Dγz j(y) = g j(y)+
∫ 1

0
k j(y, t)

(
r

∑
i=1

γikzk(t)

)
dt, (1)

at initial conditions

z(i)j (y0) = zi j i = 1, ...,n, n−1 < γ ≤ r,r ∈ N,

where Dγz j(y) signalizes the γ
th Caputo fractional order of z j(y),g j(y),k j(y, t) have

fixed functions, the real y, t in [0,1] and z j(y) has the obscure functions to be specific.

2. Definitions and fundamentals

This section provides some fundamental concepts and properties of FC theory that
are required to formulate the problem.

2.1. Caputo fractional order

The form of the Caputo fractional order operator Dγ of order γ is noted:

Dγg(y) =
1

Γ(m− γ)

∫ y

0

g(m)(t)
(y− t)γ−m+1 dt, γ > 0,

where: m−1 < γ; m ∈ N, y > 0.
The operator of the fractional Caputo derivative is an operation linear, identical to

differentiation order-integer:

Dγ(λ1 f (z)+λ2g(z)) = λ1Dγ f (z)+λ2Dγg(z),

where, λ1 and λ2 are parameters. In accordance with Caputo’s order, we have

DγO = 0, O is a paramter, (2)

Dγzr =

 0, for r ∈ N0 and r < ⌜γ⌝;
Γ(r+1)

Γ(r+1− γ)
zr−γ for r ∈ N0 and r ≥ ⌜v⌝.

(3)
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The ceiling role ⌜γ⌝ is used to symbolize the shortest integer maximal or similar
to γ , and N0 = {0,1,2, ...} where γ ∈ N.

For extra details and characteristics of the FC, see [1, 3].

3. Shifted Legendre polynomials

The well-known Legendre polynomials can be obtained by applying the next
recurrence formula, which defines them on the interval [−1,1], see [19]:

Lh+1(w) =
2h+1
h+1

wLh(w)−
h

h+1
Lh−1(w), h = 1,2, ...,

L0(w) = 1 and L1(w) = w. Because of this polynomial on y ∈ [0,1], we know
the seeming polynomials shifted Legendre via inserting the revision of variable
w = 2y− 1. The polynomials shifted Legendre Lk(2y− 1) is read via Ph(y). Then
the Ph(y) ability be gained as follows:

Ph+1(y) =
(2h+1)(2y−1)

(h+1)
Ph(y)−

h
h+1

Ph−1(y), h = 1,2, ..., (4)

where P0(y) = 1 and P1(y) = 2y− 1. The analytic shape of the polynomials shifted
Legendre Ph(y) of class h assumed via:

Ph(y) =
h

∑
j=0

(−1)h+ j (h+ j)!y j

(h− j)( j!)2 . (5)

Recall that Ph(0) = (−1)h and Ph(1) = 1. The orthogonality condition is:

∫ 1

0
Pj1(y)Pj2(y)dy =


1

2 j1 +1
, for j1 = j2;

0, for j1 ̸= j2.
(6)

The function x(y), square-integrable in [0,1], must be considered in terms of polyno-
mials shifted Legendre as:

x(y) =
∞

∑
j=0

x jPj(y),

where the coefficients x j are presented by:

x j = (2 j+1)
∫ 1

0
x(z)Pj(y)dy, j = 1,2, ... .
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Only the first (r + 1)-terms shifted Legendre polynomials have reasoned in the
workout. Next, we have the following:

xr(y) =
r

∑
j=0

x jPj(y). (7)

4. Steps the solution using the presented method

This section discusses the numerical solution of the FIDEs (1) using the least
squares approach and shifted Legendre polynomials as a tool. The style is founded
on the solution of the obscure functions z j(y) as

zk(y) =
r

∑
j=0

ai
jPj(x), 0 ≤ y ≤ 1, (8)

where, Pj(y) is shifted Legendre polynomial and A j, j = 0,1,2, ... are parameters.
With compensation (8) in (1), as follows

Dγ
r

∑
j=0

A jPj(y) = g j(y)+
∫ 1

0
k j(y, t)

(
r

∑
k=1

γ jk

[
r

∑
j=0

A jPj(t)

])
, dt (9)

The residual equation is known as

Ri(x,A0,Aa, ...,Ar) =
r

∑
j=0

A jDγPj(y)−
∫ 1

0
k j(y, t)

(
r

∑
k=1

γ jk

[
r

∑
j=0

A jPj(t)

])
dt −g j(y).

(10)
Let

Si(A0,Aa, ...,Ar) =
∫ 1

0
[R1(y,A0,Aa, ...,Ar)]

2 w(y) dy, (11)

anywhere, w(y) is the weight positive function determined on [0,1], in this mission
we pick w(y) = 1.

Si(A0,Aa, ...,Ar) =∫ 1

0

{
r

∑
j=0

A jDγPj(y)−
∫ 1

0
k j(y, t)

(
r

∑
k=1

γ jk

[
r

∑
j=0

A jPj(t)

])
dt −g j(y)

}
dy.

(12)

Consequently, determining A j, j = 0, ...,r that minimize Si is equal to feedback on
the better approach for the answer of the LFIDES (1).

Through tuning, the Si value minimum is obtained.

∂Si

∂A j
= 0, j = 0,1, ...,r, (13)
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0

{
r

∑
j=0

A jDγPj(x)−
∫ 1

0
k j(x, t)

[
r

∑
k=1

γ jk

r

∑
j=0

A jPj(t)

]
dt −g j(y)

}
×{

DγPj(x)−
∫ 1

0
k j(x, t)

[
r

∑
k=1

γ jk

r

∑
j=0

A jPj(t)

]
dt

}
dy.

(14)

We can generate a system of (r + 1) linear equations with (r + 1) unknown coeffi-
cients A j by evaluating the above equation for j = 0, ...,r. Matrices form can be used
to build this system in the following way:

A =



∫ 1

0
Ri(x,A0)hi

0dx
∫ 1

0
Ri(x,A1)hi

0dx · · ·
∫ 1

0
Ri(x,Ar)hi

0dx

∫ 1

0
Ri(x,A0)hi

1dx
∫ 1

0
Ri(x,A1)hi

1dx · · ·
∫ 1

0
Ri(x,Ar)hi

1dx

...
...

...
...

∫ 1

0
Ri(x,A0)hi

ndx
∫ 1

0
Ri(x,A1)hi

ndx · · ·
∫ 1

0
Ri(x,Ar)hi

ndx


, (15)

B =



∫ 1

0
g j(y)hi

0dx

∫ 1

0
g j(y)hi

1dx

...

∫ 1

0
g j(y)hi

ndx


, (16)

where

Ri(y,A j) =
r

∑
j=0

A jDγPj(x)−
∫ 1

0
k j(y, t)

[
n

∑
k=1

γ jk

r

∑
j=0

A jPj(t)

]
dt, (17)

hi
j = DγPj(y)−

∫ 1

0
k j(y, t)

[
n

∑
k=1

γ jk

n

∑
j=0

A jPj(t)

]
dt j = 0, ...,r, i = 1, ...,r. (18)

We can determine the values of the unknown coefficients and the approximate
outcome of (1) by solving the system described above.
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5. Simulations technique

Several numerical examples of FIDEs are provided in this section to support
the findings above. All outcomes are produced by using the Mathematica 12 software.

Example 1. Let

D
2
3 y1(z) =

−z
6

+
3z

1
3

Γ(1
3)

+
∫ 1

0
2zt[y1(t)+ y2(t)] dt,

D
2
3 y2(z) =

5z3

6
+

9z
4
3

2Γ(1
3)

+
∫ 1

0
z3[y1(t)− y2(t)] dt

 , (19)

with the conditions y1(0) = −1, y2(0) = 0, the accurate solution y1(z) = z− 1 and
y2(z) = z2.

By employing an algorithm known as least squares and shifting the Legendre
polynomials in collocation. With the obscure coefficients A j, j = 0, ...,4, i = 1, ...,r,
and (16), we have a system of (15) linear equations. The results using SLM are
according to the accurate solution (see Fig. 1, Tables 1 and 2) and the paper of Saleh
et al. [30].
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Fig. 1. The relation between the numerical solution and accurate solution

Table 1. Results for Example 1 at n = 4 for y1(z), compare the accurate solution, the close solution,
and the error

x Accurate Approximate Error
solution y1(z) solution y1(z)

0 –1 –1 0
0.2 –0.8 –0.798878 1.122e−3
0.4 –0.6 –0.598868 1.132e−3
0.6 –0.4 –0.399876 1.24e−4
0.8 –0.2 –0.198896 1.104e−3
1 0 0 0.0002125
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Table 2. Results for Example 1 at n = 4 for y2(z), compare the accurate solution, the close solution,
and the error

x Accurate Approximate Error
solution y2(z) solution y2(z)

0 0 0 0
0.2 0.04 0.03997987 2.013e−5
0.4 0.16 0.15999788 2.12e−6
0.6 0.36 0.35999677 3.23e−6
0.8 0.64 0.63999542 4.58e−6
1 1 0.9999987 1.3e−6

Example 2. Let

D
3
4 y1(z) =− 1

20
− z

12
+

4z
1
4 (15−23z2)

15Γ(1
4)

+
∫ 1

0
(z+ t)[y1(t)+ y2(t)], dt

D
3
4 y2(z) =

5z3

6
+

9z
4
3

2Γ(1
3)

+
∫ 1

0

√
zt2[y1(t)− y2(t)] dt

 . (20)

Subject to y1(0) = 0, y2(0) = 0 with accurate solution y1(z) = z− z3, y2(z) = z2 − z.
The same in the above example, using the style of least squares for the help of

shifted Legendre polynomials collocation Pj(z), j = 0,1, ...,r at r = 4 to (20), the
numerical results have displayed in Figure 2. We are compared from accurate solution
and the approximation solution. The results using SLM are according to the accurate
solution (see Tables 3 and 4) and the paper of Saleh et al. [30].
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Fig. 2. The relation between the numerical solution and exact solution

Example 3. An equation with fractional integral-differential being studied:

D0.75y(z) =
z0.25

Γ(1.25)
− z2 − z4

3
+ z y(z)+

∫ z

0
z s y(s) ds,

y(0) = 0, (21)

with the accurate solution y(z) = z.



Solution of fractional integro-differential equations using least squares and shifted Legendre methods 67

Table 3. Results for Example 2 at n = 4 for y1(z), compare the accurate solution, the close solution,
and the error

x Accurate Approximate Error
solution y1(z) solution y1(z)

0 0 −5.24553e−13 5.24553e−11
0.2 0.192 0.192 5.39485e−11
0.4 0.336 0.336 5.4956e−11
0.6 0.384 0.384 5.55445e−11
0.8 0.288 0.288 5.57221e−13
1 0 −5.57887e−13 5.57887e−13

Table 4. Results for Example 2 at n = 4 for y2(z), compare the accurate solution, the close solution,
and the error

x Accurate Approximate Error
solution y2(z) solution y2(z)

0 0 1.41276e−13 1.41276e−13
0.2 –0.16 –0.192 1.71613e−11
0.4 –0.24 –0.24 1.94622e−11
0.6 –0.24 –0.24 2.10276e−12
0.8 –0.16 –0.16 2.18492e−13
1 0 2.1438e−13 2.1438e−13

Table 5. The outcomes of Example 3

z Accurate SLM Abs. E
0.2 0.2 0.1999984476 1.5524E-6
0.4 0.4 0.3998762025 1.237975E-4
0.6 0.6 0.5983168111 1.6831889E-3
0.8 0.8 0.7887498311 1.12501689E-2
1.0 1.0 0.9486188796 5.13811204E-2

The results using SLM are according to the accurate solution (see Table 5) and the
paper of Saleh et al. [25].

Example 4. An equation with fractional integral-differential is studied:

D0.25y(z) =
6 z2.75

Γ(3.75)
− 1

5
z2 ez y(z)+

∫ z

0
ez s y(s) ds,

y(0) = 0, (22)

with the accurate solution y(z) = z3.
The results using SLM are according to the accurate solution (see Table 6) and the
paper of Saleh et al. [25].
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Table 6. The outcomes of Example 4

z Accurate SLM Abs. E
0.2 0.008 0.00800000 0
0.4 0.064 0.06400000 0
0.6 0.216 0.21600000 0
0.8 0.512 0.51200000 0
1.0 1.000 1.00000000 0

6. Conclusion

In this essay, we have discussed the numerical style for resolving the FIDEs.
We have used the least squares method and the Legendre method. We have used
the Caputo meaning and have shown the properties of the FC. Additionally, we have
shown the properties of the Legendre and shifted Legendre style and we have dis-
cussed the four examples. The outcomes offer that styles collocate for the numbering
of terms is maximum. Because the solution is seen as a truncated shifted Legendre
polynomials series, it is possible to easily estimate it given time spot values. Several
numerical examples (four examples) have been given to clarify the notional outcomes
and liken them to those gained using exact solutions. Figures and tables which
obtain the view show the simulations of the suggested approaches that were used
to get the theoretical results. Using Mathematica 12, we have programmed the
numerical results.
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