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Abstract. The aim of this paper is to investigate a stochastic SIS (Susceptible, Infected,
Susceptible) epidemic model in which the disease transmission coefficient and the death rate
are subject to random disturbances. Using the convergence theorem for local martingales
and solving the Fokker-Planck equation associated with the one-dimensional stochastic
differential equation, we demonstrate that the disease will almost surely persist in the mean.
In the case of global asymptotic stability of the endemic equilibrium for a SIS deterministic
epidemic model, we formulate suitable conditions guaranteeing that the stochastic SIS model
has a unique ergodic stationary distribution. Furthermore, we deal with the exponential
extinction of the disease. Finally, some numerical simulations are provided to illustrate
the obtained analytical results.
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1. Introduction

Compartmental epidemic models are used to describe the transmission of infec-
tious diseases within a population. These models involve categorizing the popula-
tion into distinct compartments corresponding to their health status. This mathemat-
ical modeling approach was pioneered by Kermack and McKendrick, who utilized
a system of three deterministic differential equations to scrutinize the population
dynamics as individuals move among the susceptible, infected, and recovered
compartments [1].
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Epidemiological systems exhibit complexity which arises from the inherent ran-
domness in nature (see [2–11] and the references therein). The way infectious dis-
eases are transmitted can vary significantly due to various factors such as the nature
of the diseases, environmental conditions, individual behaviors, and the efficacy of
disease prevention and control measures [12]. In the literature on stochastic compart-
mental models, the basic one was formulated by Gray et al. [4] using a system of two
stochastic differential equations{

dS(t) = [µ(S(0)+ I(0))−µS(t)−βS(t)I(t)+λ I(t) ]dt −σS(t)I(t)dB(t),
dI(t) = [βS(t)I(t)− (µ +λ )I(t) ]dt +σS(t)I(t)dB(t).

(1)

Herein, S(t) and I(t) are the numbers of susceptible and infected individuals
with initial values S(0) and I(0), respectively. The parameter µ is the per capita
birth and death rate, β is the disease transmission coefficient between susceptible
and infected individuals, λ the recovery rate, and σ is the white noise intensity asso-
ciated with the Brownian motion B(t) (t ≥ 0). From model (1), the total population
S(t)+ I(t) = S(0)+ I(0) is constant for all t > 0. Therefore, instead of analyzing sys-
tem (1), it is sufficient to study the following one-dimensional stochastic differential
equation

dI(t) =
([

β (S(0)+ I(0)− I(t))− (µ +λ )
]
dt +σ

(
S(0)+ I(0)− I(t)

)
dB(t)

)
I(t).

(2)

In [4], the authors demonstrated the existence, uniqueness, and positivity of
a solution to equation (2). Conditions governing the extinction and persistence of
the disease have been established based on the intensity of white noise. In the case
of persistence, the paper [4] shows the existence of a unique stationary distribution
for (2) and provides expressions for its mean and variance. Another investigation
of equation (2) was conducted by Xu [6], where the stochastic extinction threshold
of (2) is determined by Feller’s test for explosions [13]. Solving the Fokker-Planck
equation related to (2), the study establishes the existence and uniqueness of the
invariant density for (2). Furthermore, it presents conditions ensuring the prevalence
of the disease in terms of this invariant density.

To enhance the analysis of the SIS epidemic model class, we add Gaussian white
noise around the parameter µ in model (1). This leads to a modified version of the
SIS stochastic model (1), defined by the following:

dS(t) =
[
µ(S(0)+ I(0))−µS(t)−βS(t)I(t)+λ I(t)

]
dt −ξ1S(t)dB1(t)

−ξ2S(t)I(t)dB2(t),

dI(t) =
[
βS(t)I(t)− (µ +λ )I(t)

]
dt −ξ1I(t)dB1(t)+ξ2S(t)I(t)dB2(t),

(3)
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where B1(t) and B2(t) are two independent Brownian motions, ξi the intensity of
their corresponding white noises (i ∈ {1,2}).
In contrast to the model (1), a significant characteristic of the stochastic model (3)
is that the total population N (t) := S(t) + I(t) is no longer constant, due to the
following equation:

dN (t) =
[
µ(S(0)+ I(0))−µN (t)

]
dt −ξ1N (t)dB1(t). (4)

The innovation in this article lies in employing the convergence theorem for local
martingales [14] and the stationary ergodic characteristics of the stochastic process
(4), under specific conditions, to compute the persistence threshold of model (3).
Additionally, the extinction threshold is determined by using the strong law of large
numbers for martingales [15]. Moreover, conditions ensuring stationarity and ergod-
icity of the model (3) are given. To validate the analytical findings for each case study,
we conduct some numerical simulations using the Matlab2015b software.

2. Main results

Throughout this paper, we define (Ω,(Ft)t≥0,P) as a complete probability space
with a filtration (Ft)t≥0 satisfying the usual conditions. The set of real numbers
is denoted by R. We define Rd

+ as the set of (x1, ...,xd) ∈ Rd such that xi > 0 for

i = 1, ...,d, and we denote the time average of ϕ(t) as ⟨ϕ(t)⟩= t−1
∫ t

0
ϕ(r)dr, where

ϕ is a continuous function. Additionally, the abbreviation ”a.s.” stands for ”almost
surely”.

Let us now consider the d-dimensional stochastic differential equation

dX (t) = F(X (t), t)dt +G(X (t), t)dW (t) for all t ≥ t0, (5)

with initial value X (t0) ∈ Rd . The symbol W (t) is for an n-dimensional standard
Brownian motion. We denote by C 2,1(Rd × [t0,∞];R) the family of all functions
V (x, t) defined on Rd × [t0,∞] such that they are continuously twice differentiable
in X and once in t. The differential operator L of Equation (5) is defined by

L =
∂

∂ t
+

d

∑
i=1

fi(X , t)
∂

∂Xi
+

1
2

d

∑
i, j=1

[GT (X , t)G(X , t)]i j
∂ 2

∂Xi ∂X j
.

If L acts on V ∈ C 2,1(Rd × [t0,∞];R), then

LV (X , t) = Vt(X , t)+VX (X , t)F(X , t)+
1
2

trace[GT (X , t)VX X (X , t)G(X , t)],
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where

Vt =
∂V

∂ t
, VX =

(
∂V

∂X1
, ...,

∂V

∂Xd

)
,VX X =

(
∂ 2V

∂Xi∂X j

)
d×d

.

Here, GT (X , t) and trace[GT (X , t)VX X (X , t)G(X , t)] stand for the transpose
of the vector G(X , t) and the trace of the matrix GT (X , t)VX X (X , t)G(X , t),
respectively.
The Itô formula is presented by the following equality:

dV (X (t), t) = LV (X (t), t)dt +VX (X (t), t)G(X (t), t)dW (t).

The following theorem concerns the existence of a global positive solution for model
(3). Its proof is similar to that in [16], and therefore we omit it here.

Theorem 1 . For any given initial condition (S(0), I(0)) ∈ R2
+, the stochastic model

(3) admits, almost surely, a global positive solution. 2

The proof of the theorem above shows that there is no explosion of the solution when
t <∞, but at infinity we can not be sure if the explosion can happen or not. To respond
to this dilemma, we present the following lemma:

Lemma 1 Let (S(t), I(t)) be the solution of model (3) with initial value (S(0), I(0))∈
R2
+. Then

lim
t→∞

N (t)< ∞ a.s.

and

lim
t→∞

⟨N (t)⟩= N (0) a.s.

Furthermore, N (t) has a unique ergodic stationary distribution with density π given
by

π(x) =

(
2µ N (0)

ξ 2
1

)1+ 2µ

ξ 2
1

Γ
−1
(

1+
2µ

ξ 2
1

)
x
−2

(
1+ µ

ξ 2
1

)
e
− 2µ N (0)

ξ 2
1 x ,

where Γ is the Gamma function.

PROOF From the differential equation (4), we have

N (t) =N (0)−ξ1

∫ t

0
e−µ(t−s)N (s)dB1(s)

=N (0)−A (t),

where A (t) = ξ1

∫ t

0
e−µ(t−s)N (s)dB1(s) is a martingale vanishing at t = 0.
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According to the convergence theorem for local martingales, we conclude that

lim
t→∞

N (t)< ∞ a.s. (6)

On the other hand, one easily derives

⟨A (t)⟩= ξ1

µt

[∫ t

0
N(r)dB1(r)−

∫ t

0
e−µ(t−r)S(r)dB1(r)

]
.

Bearing in mind (6) and the strong law of large numbers for martingales, we get

lim
t→∞

⟨A (t)⟩= 0 a.s.

Therefore

lim
t→∞

⟨N (t)⟩= N (0) a.s.

Next, we consider the mathematical stationarity and ergodicity of the stochastic
process (4).

A stochastic process is stationary if its probability distribution varies more or less
constantly over a certain period of time. Solving the Fokker-Planck equation asso-
ciated with the stochastic equation (4) shows that the stochastic process N (t) has
a unique stationary distribution with a density defined by

π(x) =

(
2µ N (0)

ξ 2
1

)1+ 2µ

ξ 2
1

Γ
−1
(

1+
2µ

ξ 2
1

)
x
−2

(
1+ µ

ξ 2
1

)
e
− 2µ N (0)

ξ 2
1 x .

Assign a(r) = µN (0)−µr and b(r) =−ξ2r.
By direct calculation, we obtain∫ z

c

a(r)
b2(r)

du =
µN (0)

ξ 2
1

(1
c
− 1

z

)
+

µ

ξ 2
1
(logc− logz),

where c is a positive constant.
Then

e
−2
∫ z

c
a(r)

b2(r)
dr
= c

− 2µ

ξ 2
1 e

−2 µN (0)
ξ 2
1

1
c z

2µ

ξ 2
1 e

2 µN (0)
ξ 2
1

1
z
.

For all s > 0, we have∫ s

0
e
−2
∫ z

c
a(r)

b2(r)
dr

dz = c
− 2µ

ξ 2
1 e

−2 µN (0)
ξ 2
1

1
c
∫ s

0
z

2µ

ξ 2
1 e

2 µN (0)
ξ 2
1

1
z dz

≥ c
− 2µ

ξ 2
1 e

−2 µN (0)
ξ 2
1

1
c e

2 µN (0)
ξ 2
1

1
s
∫ s

0
z

2µ

ξ 2
1 dz.
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Therefore,

lim
s→∞

∫ s

0
e
−2
∫ z

c
a(r)

b2(r)
dr

dz = ∞.

One more integration gives

∫
∞

0
b−2(z)e

2
∫ z

c
a(r)

b2(r)
dr

dz =ξ
−2
1 c

2µ

ξ 2
1 e

2µN (0)
ξ 2
1

1
c
∫

∞

0
z
−2

(
1+ µ

ξ 2
1

)
e
− 2µN (0)

ξ 2
1 z .

Performing the variable changing: y =−2µN (0)
ξ 2

1 z
, we get

∫
∞

0
b−2(z)e

2
∫ z

c
a(r)

b2(r)
dr

dz = ξ
−2
1 c

2µ

ξ 2
1 e

2µN (0)
ξ 2
1

1
c

(
2µN (0)

ξ 2
1

)−
(

1+ 2µ

ξ 2
1

)
Γ

(
1+

2µ

ξ 2
1

)
< ∞.

By Theorem 1.16 in [17], we conclude that the stochastic process (4) is ergodic.
This completes the proof. ■

Remark 1 The solutions of stochastic differential equations can be considered as
a time series. Stationarity and ergodicity are important properties of the time series.
A process is said to be stationary if its statistical properties do not vary over time,
namely its mean, its variance, or even its covariance. However, it is said to be ergodic
if its temporal average converges in mean square towards its statistical expectation.2

2.1. Disease persistence

Let RP =
1

µ +λ +
ξ 2

1
2

(
β N (0)− ξ

2
2

µ N 2(0)
2µ −ξ 2

1

)
be the persistence threshold

of the model (3).

Theorem 2 . If µ >
ξ 2

1
2

and RP > 1, then the disease will almost surely be persistent.

PROOF Applying the Itô formula yields

d ln I(r) =

[
βS(r)−

(
µ +λ +

ξ 2
1
2

)
− ξ 2

2
2

S2(r)

]
dr−ξ1dB1(r)+ξ2S(r)dB2(r).

(7)

It follows that

ln I(t)− ln I(0)
t

= β ⟨S(t)⟩−
(

µ +λ +
ξ 2

1
2

)
− ξ 2

2
2
⟨S2(t)⟩−ξ1

B1(t)
t

+
ξ2

t

∫ t

0
S(r)dB2(r). (8)
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From the stochastic model (3), we have

⟨S(t)⟩=−N (t)−N (0)
µt

+N (0)− ⟨I(t)⟩− ξ1

µt

∫ t

0
N (r)dB1(r). (9)

Combining (9) with (8) gives

β ⟨I(t)⟩ ≥βN (0)−
(

µ +λ +
ξ 2

1
2

)
− ξ 2

2
2
⟨N 2(t)⟩−β

N (t)−N (0)
µt

− ln I(t)− ln I(0)
t

−ξ1
B1(t)

t
+

ξ2

t

∫ t

0
S(r)dB2(r)−β

ξ1

µt

∫ t

0
N (r)dB1(r). (10)

The ergodic property of the stochastic process N (t) entails

lim
t→∞

⟨N 2(t)⟩=
∫

∞

0
x2

π(x)dx.

Achieving an integration by parts, we get

∫
∞

0
x2

π(x)dx =

(
2µ N (0)

ξ 2
1

)2
Γ

(
2µ

ξ 2
1
−1
)

Γ

(
2µ

ξ 2
1
+1
) =

2µ N 2(0)
2µ −ξ 2

1
,

together with (10), we obtain

β liminf
t→∞

⟨I(t)⟩ ≥β N (0)−

(
µ +λ +

ξ 2
1
2

)
−ξ

2
2

µ N 2(0)
2µ −ξ 2

1
a.s.,

=

(
µ +λ +

ξ 2
1
2

)(
RP −1

)
a.s.

If RP > 1, we deduce that

liminf
t→∞

⟨I(t)⟩> 0 a.s.,

which means that the disease will almost surely prevail. The proof is complete. ■

Remark 1 Adding the condition µ >
ξ 2

1
2

in the statement of Theorem 2 is necessary

for Γ

(2µ

ξ 2
1
−1
)

to be finite. 2

2.2. Stationary distribution

The deterministic counterpart of the two stochastic systems (1) and (3) has

a unique endemic equilibrium (Se, Ie) =
(

µ +λ

β
,
(µ +λ )

β

(
R−1)

)
which is globally
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asymptotically stable, if R :=
β N (0)
µ +λ

> 1 (see [18]).

This subsection is devoted to establish necessary conditions for the stochastic process
(3) to be stationary. The proof of the following result is similar to that of Theorem 6
in [18]. Hence, we omit it here.

Theorem 3 . If R > 1 and 0 < A3 < min
(
A1S2

e , A2I2
e

)
, then the model (3) has

a unique ergodic stationary distribution, where

A1 = µ− 3
2

ξ
2
1 −

2µ

β
Ieξ

2
2 , A2 = µ− 3

2
ξ

2
1 and A3 = 3ξ

2
1

(
S2

e +I2
e

)
+

2µIe

β

(
ξ 2

1
2
+S2

eξ
2
2

)
.

2.3. Stochastic extinction

Theorem 4 . If ξ
2
2 ≤ β

N (0)
and RX :=

N (0)

µ +λ +
ξ 2

1
2

[
β − ξ 2

2
2

N (0)

]
< 1 holds,

then

lim
t→∞

I(t) = 0 and lim
t→∞

⟨S(t)⟩= N (0) a.s.

2

PROOF Returning to (8), we get

ln I(t)
t

≤ ln I(0)
t

+
1
t

∫ t

0

[
− ξ 2

2
2

(
S(r)− β

ξ 2
2

)2

+
β 2

2ξ 2
2
−
(

µ +λ +
ξ 2

1
2

)]
dr−ξ1

B1(t)
t

+
ξ2

t

∫ t

0
S(r)dB2(r). (11)

By Lemma 1, we have
limsup

t→∞

⟨S(t)⟩ ≤ N (0) a.s.

It follows that, for any positive number ε , there exists T0 > 0 such that

⟨S(t)⟩ ≤ N (0)+
ε

ξ 2
2

for all t ≥ T0.

We assume that ξ
2
2 ≤ β

N (0)
. Then

⟨S(t)⟩ ≤ N (0)+
ε

ξ 2
2
≤ β + ε

ξ 2
2

for all t ≥ T0,
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combined with (11), we obtain for all t ≥ T0

ln I(t)
t

≤ ln I(0)
t

− ξ 2
2
2

[
β + ε

ξ 2
2

−
〈

S(t)
〉]2

+
(β + ε)2

2ξ 2
2

−

(
µ +λ +

ξ 2
1
2

)
−ξ1

B1(t)
t

+
ξ2

t

∫ t

0
S(r)dB2(r)

≤ ln I(0)
t

− ξ 2
2
2

[
β

ξ 2
2
−N (0)

]2

+
(β + ε)2

2ξ 2
2

−

(
µ +λ +

ξ 2
1
2

)
−ξ1

B1(t)
t

+
ξ2

t

∫ t

0
S(r)dB2(r)

=
ln I(0)

t
+βN (0)−

(
µ +λ +

ξ 2
1
2

)
− ξ 2

2
2

N 2(0)+ ε
2β + ε

2ξ 2
2

−ξ1
B1(t)

t

+
ξ2

t

∫ t

0
S(r)dB2(r).

Letting ε → 0 leads to

limsup
t→∞

ln I(t)
t

≤βN (0)−

(
µ +λ +

ξ 2
1
2

)
− ξ 2

2
2

N 2(0) a.s.,

=

(
µ +λ +

ξ 2
1
2

)(
RX −1

)
a.s.

If RX < 1, then

limsup
t→∞

ln I(t)
t

< 0 a.s.

Thus
lim
t→∞

I(t) = 0 a.s.

Hence, for any positive number δ , there exists a T1 > 0 such that I(t) ≤ δ for all
t ≥ T1.
Integrating the first equation of system (3), for all t ≥ T1, gives

S(t)−S(T1)

t
≥ t −T1

t
µ N (0)− δβ

t

∫ t

T1

S(r)dr− µ

t

∫ t

T1

S(r)dr

− ξ1

t

∫ t

T1

S(r)dB1(r)−
ξ2

t

∫ t

T1

S(r)I(r)dB2(r).

Letting δ → 0, leads to
liminf

t→∞
⟨S(t)⟩ ≥ N (0) a.s.
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By Lemma 1, we have
limsup

t→∞

⟨S(t)⟩ ≤ N (0) a.s.

Therefore
lim
t→∞

⟨S(t)⟩= N (0) a.s.

3. Numerical simulations

Numerical verification helps to validate the theoretical results and understand the
underlying phenomena. By means of the Milstein method mentioned in Higham [19],
we consider the following discretized version of the stochastic model (3):

S(i+1) =S(i)+
(

µ N (0)−µS(i)−βS(i)I(i)+λ I(i)
)

dt −σ1S(i)
√

dt rn1

−σ2S(i)I(i)
√

dt rn2,

I(i+1) = I(i)+
(

βS(i)I(i)− (µ +λ )I(i)
)

dt −σ1I(i)
√

dt rn1 +σ2S(i)I(i)
√

dt rn2,

where dt > 0 is the time increment and rn j ( j = 1,2) are normally distributed random
variables. We present the following examples in order to check the analytical results
of Theorems 2, 3 and 4.

Example 1 (Disease persistence – Stationary distribution)
We consider the following initial data: (S(0), I(0)) = (0.7,0.3). We choose

ξ1 = 0.1, ξ2 = 0.2, β = 0.65, µ = 0.35, λ = 0.1.

Then

RP = 1.384, µ − ξ 2
1
2

= 0.345

and

liminf
t→∞

⟨I(t)⟩= 0.2688 > 0 a.s.

Consequently, the conditions of Theorem 2 are verified, and the disease will almost
surely prevail (Fig. 1).
Moreover

R = 1.4444, A1 = 0.3309, A2 = 0.335, A3 = 0.0252,

and

A3 −min
(
A1S2

e , A2I2
e

)
=−0.0065.

According to Theorem 3, the model (3) has a unique ergodic stationary distribu-
tion and the deterministic endemic equilibrium (Se, Ie) = (0.6923,0.3077) is globally
asymptotically stable, as shown in Figures 1 and 2. 2
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Example 2 (Disease extinction)
Let

S(0) = 0.3, I(0) = 0.7, ξ1 = 0.7, ξ2 = 0.6, β = 0.9, µ = 0.1, λ = 0.8.

We compute that

RX = 0.6288 and
ξ 2

2
2

− β

N (0)
=−0.72.

Then

limsup
t→∞

ln I(t)
t

=−0.425 < 0 a.s.

From Figure 3, the result of Theorem 4 is confirmed. 2

Fig. 1. The left-hand column presents the trajectories of individuals S and I of stochastic system (3),
and its deterministic system, respectively. The right-hand column presents the frequency histogram

fitting curves at time t = 400
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Fig. 2. From left to right: The 3D representation of the joint densities of S and I, the bivariate
distribution of S and I, and the 2D upper view of the bivariate distribution of S and I

at t = 400, respectively

0 50 100 150 200 250 300 350 400

time

0

0.5

1

1.5

2

2.5
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3.5

4

4.5

5

Infected individuals

Susceptible individuals

Fig. 3. Random paths of S(t) and I(t) up to the time horizon t = 400

4. Conclusion and future remarks

In this paper, we investigated a class of stochastic SIS epidemic models with two
independent white noises. The only stochastic component is due to environmental
variability as white noises around the disease transmission rate β and the death rate µ .
By solving the Fokker-Plank equation associated with the one-dimensional stochastic
differential equation (4), we skillfully showed that the disease will almost surely
be persistent. After, conditions ensuring the existence of a unique ergodic invariant
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distribution for the model (3) were established. In this case, it should be noted that
the endemic equilibrium (Se, Ie) of the deterministic counterpart of (3) is globally
asymptotically stable. Therefore, the invariance of the distribution of the stochastic
model (3) retains the prevalence of the disease when the intensities ξ1 and ξ2 are
very small. Finally, when random fluctuations are very large, the disease goes away
exponentially. Some topics deserve further investigation. We are looking to the use
of Lévy processes and other related investigations (see [20–23]) in stochastic model
(3). We leave them for our future works.
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